E

TH

HACKER

S GUIDE

M

—_

ll‘l-.lJJ-.‘ .
0|
i
ﬁ

_.23%22? E i mﬁ“
- »ﬂn st

» l..J.-Jl

Table of Contents

. System Overview

. Numbers

. Z80 Assembly Language
. Disassembler

. Memory Map

. Memory Bank Switches
. Operating System

. BASIC

. Video Display Processor
10. Sound

11. Game Controllers

12. AdamNet

13. Keyboard

14. Printer

15. Tape

16. Power Supply

17. Expansion Connectors
18. Pinouts

O 001N DN~ WK —

Program Index
Hex table
Disass

Viewer
Printmem
Romviewer
Sprite editor
Demo sprite ed
SCRN-HGR
Print VRAM
Sprite demo
Font editor
Sound test
RND music
Music editor
Printer demo
Tape editor
Tape backup
Cartridge copy

15
21
23
24
27
29
42
48
49
50
51
52
56
57

16
19
20
23
36
37
37
37
38
39
44
44
47
52
53
54
55

Chapter 1. System Overview.

The Adam has two main circuit boards, the Colecovision board on top and
the Adam board on the bottom. The Colecovision board has the 280
microprocessor that you can program, the video display processor, sound
processor, game controllers, and some ROM. The Adam board has the 64K RAM,
master 6801 microprocessor that runs AdamNet, ROM's, and the tape 6301. The
system is very complex, much more so than other home computers, because Adam is
an expansion of a game board and because it was designed to load tapes during a
game wnile the screen is still active, something computers with only cne
microprocessor cannot do. The diagram below is an outline of the components
that will be discussed in more detail in separate chapters.

Game 0S7 ROM 6801

16K VRAM Controllers EQS ROM Keyboard
(1/0) /grtndge ROM | 801
Video Bank ____,{Smar:Writer ROM | Printer

Display @ z80 :—JSwitch @ Master

Processor (/9 @/ \{M\ 6801 6301
you are here m ExXpan. ROM Tape
6301

I/0= in/out DMA= direct memory access Disk

The Z80 and master 6801 can both read and write the same 64K RAM space, and
data is passed from one to the other by leaving it in special locations in RAM
where it will be picked up later. This is good for games because action is not
interrupted, but seems unnecessarily complicated for computer applications.

The Z80 addresses the game controllers, video display processor, and sound in a
special in/out space, only accessible from machine language. It can also
change the memory it looks at in its normal 64K space by a bank switch
controlled from the in/out space.

As a machine language programmer you must think of yourself as being
located at the Z80 and writing numbers to, or reading numbers from, the various
memory locations and devices. Usually it is only necessary to write a short
machine language routine to accomplish a desired task, and the major part of
your program can be in BASIC.

CHAPTER 2. Numbers

Several ways of representing numbers are used with computers, which may be a
pain at first but is convenient. The numbers actually handled by the Z80 and
stored in RAM are in binary (base 2), where 0 is represented by 0.5 to 1 volts
and 1 is represented by 3.5 to 4.5 wvolts. Thus binary is the natural number
system for computers because they have two states, just as decimal is the
natural number system for us because we have ten fingers. Binary numbers are
not used directly to program the Adam, however, because they are quite awkward.
Instead several number systems are used, called hexadecimal (base 16), two's
complement, and floating point, in addition to the usual decimal used in BASIC.
The easiest way to convert numbers from binary to decimal or vice versa is to
first convert binary to hexadecimal and then hexadecimal to decimal. Conversion
of hexadecimal to decimal is done using the table or subroutine for programs
shown later. Such subroutines are never there when you need them, however, and
the best way to solve the numbers problem is to buy a hexadecimal-decimal
calculator.

BINARY
The binary numbers in the Adam are stored in 8 bit units called bytes. The
digits represent powers of 2 (1,2,4,8,16,32,64,128), represented with the most
significant bit (128) on the left and least significant bit (1) on the right.
Terms used to describe binary numbers are:
bit cne binary digit
nibble four binary digits
byte eight binary digits
page 256 bytes

block four pages
Examples of 3 bit binary numbers are 173 = 10110010 = B2, 55 = 00110111 = $37,
239 =11101111 = EF, 17 = 00010001 = §l1. Hexadecimal numbers are indicated by §
when necessary. Binary numbers are not used often by programmers except when
certain bits have to be changed or when making shape tables (unless you use a
shape-maker program).

Variables in BASIC that are specified as integers by following the name with
% (eg. DIM A%(30)),are stored as 2 byte binary numbers, the least significant
byte first. Thus the range of possible values is from 0 to FFFF, or 0 to
65,535 decimal. Strings of ‘letters, numbers (0 to 9), and symbols are stored as
one byte binary numbers which correspond to the letters etc. according to ASCII
code (see the Coleco BASIC manual).

HEXADECIMAL

Hexadecimal representation is convenient when programing in machine
language because each digit corresponds to 4 bits in binary, and a byte can
always be represented by two hexadecimal digits. Furthermore, addresses in
memory are often divided into pages of 256 bytes, and all 64K (65,5335) bytes of

RAM can be specified by four hexadecimal digits (0000 to FFFF). The problem
comes, however, when 3ASIC is used, since all access to memory (PEEK and POKE)

are in decimal. Conversions between hexadecimal and decimal can be made with
the table below, finding the decimal number in the table from the first and
second hexadecimal digits in the lefthand column and top row, respectively. The

reverse conversion is also convenient. Four digit hexadecimal numbers can be

easily converted to decimal by looking up the left two digits, multiplying the
decimal equivalent times 256, and adding the result to the decimal equivalent

of the right two ,digits.

Hexadecimal to decimal conversion.

o 1 2 "3 .4 5§ 8 T 480 ¥gl A RSEARC SR
0 1 Dlmmfe Sdf Sronbimat w3 5910 gdlesil2 03 18 A5
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3t

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 TO T1 T2 T3 T4 75 76 77 18 79
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 7 98 99 100 101 102 103 104 105 106 107 108 109 110 111
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
130 131 132 133 134 135 136 137 138 139 140 141 142 143
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
192 193.194 195 196 197 198 199 200 201 202 203 204 205 206 207
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

g O Q0 0~ 0EUWN = O
N
w
n
\0

The table was generated by the following program in 3ASIC. The "NOT" statements
are needed to line up the columns because the TAB command only works to 31,
appropriate for the screen but not the printer. It is probably worth printing
some of these tables so you can always have one handy.

3 PR #1
4 PRINT
5 h3 = "01234567a9a3cnzrn
7 PRINT "
10 FOR X =1 T0 16
20 PRINT MID$(h$, x, 1); " "
30 NEXT: PRINT |
40 PFORx =1 T 16
50 PRINT MID$(h$, x, 1); " ";
60 FORy =1 T0 16
65 PRINT " ";
70 IF NOT INTEn/100) THEN PRINT " ";
80 IF NOT INT(n/10) THEN PRINT " ";
90 PRINT n; : n = n+i
100 NEXT y: PRINT: NEXT x

The conversion of hexadecimal and decimal numbers in programs can be done
with the following subroutines.

5 REM hex %o dec converter
10 23 = "0123456789ABCDEF"

20 INPUT b3

30 ?on x=1T2: FORk =1 T0 16

40 I Mznscbs X, 1) = wrns(xs k, 1) ™EN b(x) = k=1: k = 16
50 wEx

55 PRINT b(1)*16+b(2)
60 GOTO 20

TWO'S COMPLEMENT BINARY.

This convention is used to represent positive and negative numbers in
binary or hexadecimal, and is used for relative jumps on the Z80. Positive
numbers O to 127 decimal (0lllllll or 7F) are the same as usual for 8 bits.
Negative numbers are made by pretending that the byte is the odometer on your
car and driving backwards starting at zero. Thus -1 = 11111111, -2 = 1111110,
etc. To complement a binary number means to change all the l1's to 0's and 0's
to 1's. Doing just that is called I''s complement. 2's complement is 1's
complement plus 1, and the 2's complement of a number from (decimal) 1 to 127
is the negative of the number. Thus in decimal 255 to 128 are negative numbers
in this convention. This is logical because arithmatic in 2's complement works
if you ignore the carry. For example, adding +9 and -2 gives +7.

+9 00001001
-2 11111110
+7 00000111

Relative jumps on the Z80 are a little more complicated (as usual) because +2
is added to the offset before the jump.

FLOATING POINT

Numerical variables that are not followed by % are stored in floating
point representation, which allows a wide range of values. It is similar to
"scientific notation" of calculators or BASIC, with a mantissa times the number
base to a power or exponent. For most practical purposes the scale can be
regarded as continuous, but it is actually 240 discrete numbers, half of
which are between -1 and +l1. Zero cannot be represented exactly. The mantissa
can take values between 1/2 and (almost) 1, in binary 0.10000... and
0.11111..(the "." being the binary equivalent to a decimal peint) ,positive or
negative. The exponent is from 0 to 127, positive or negative. There are many
different formats for the actual representation in RAM. On the ADAM the
mantissa is four bytes and the exponent one byte with the following format.
The mantissa bytes are stored in RAM in reverse order, with the least
significant first. The most significant byte is strange in that the top bit
(left) is assumed to be 1 for the purpose of calculating the number but is in
fact used to specify the sign,l=-,0=+. The sign of the exponent is specified
by the top bit (l=+, O=-). thus $80=0, $8l=1, $78=-2, etc. The following
examples should make this clear. To try other numbers add a line to the
printmem program which sets a variable to the number and then look on page 206
or 207 for the number in RAM (see BASIC chapter).
decimal floating point (hex) top 4 bits decimal

1 00 00 00 00 81 1000 /2 * 27
2 00 00 00 00 82 1000 1/2 % 2°+2
3 00 00 00 40 82 1100 3/4 * 2°+2
4 00 00 00 00 83 1000 1/27% 2733
5 00 00 00 20 83 1010 5/8 * 27+3
6 00 00 00 40 83 1100 3/4 * 2743
7 00 00 00 60 83 1110 7/8 * 2°+3
8 00 00 00 00 84 1000 1/2 * 2°+4
9 00 00 00 10 84 1001 9/16* 2°+4
10 00 00 00 20 84 1010 5/8 * 27+4

0.5 00 00 00 00 80 1000 1/2 * 2°+0

0.25 FF FF FF 7F 7E lllletc. 1 * 27=2

0.001 98 6E 12 03 77 - - * 2%9

100 00 00 00 48 87 11001 100/128*2°+7

-1 00 00 00 80 81 1000 =1/2 "2“+1

=10 00 00 00 AO 84 1010 -5/8 * 2%+4

=-0.25 :FE‘ FF FF FF,JE 1111 -1 * 2%=2
mantissa ex;b élways 1

top bit= sign

To translate a floating point number into hexadecimal, write it out in
binary, set the top bit, and place the binary point. Then return to
hexadecimal starting at the binary point. For example, the number in the
floating point accumulator printed out by Printmem is: 00 00 90 7C 8E. Why?
Convert to binary:

7 c 9 0 Qetc

Set the top bit and place the point at 14 (8E):

'_J;_g];_l:_’_l_l’oo 1001 00.00 0000

3 F 2
3F24 is the address of the "90" byte of the number in RAM, so the FP
accumulator held the address being PEEKed and was changing with each PEEK.
Since only the "90" byte of the accumulator was changing during the program at
that point, the accumulator was caught at the number of the "90" address.

CHAPTER 3. The Z80

The Z80 microprocessor is the central processing unit (CPU) of the Adam.
It steps along programs in RAM, executing simple machine language instructions,
much as a calculator is programmed by pushing buttons. The machine language
instructions are a series of 3 bit numbers that represent operations that move
3 bit numbers from one register to another, or add two 8 bit numbers, etc. For
people to understand what is going on, these operations are usually represented
in "assembly language”, a series of mnemonics for the instructions which
correspond to the machine language numbers. A program which takes mnemonics
and turns them into machine language numbers is called an assembler. A program
which takes machine language and turns it into mnemonics is called a
disassembler. A disassembler, which is given in chapter 4, is useful to print
out the machine language programs in the ADAM, which are BASIC, the operating
system and SmartWriter, in a form that is reasonable to understand. This
chapter will give a brief outline of the Z80 which should be enough to allow
understanding of a disassembly listing and simple machine language programming.
If more advanced information is needed a complete bock on the Z80 such as
Rodnay Zaks' "How to program the Z80" should be consulted.

The Z80 has several registers, as shown below.

MAIN REG SET ALTERNATE REG SET
A V,
f— \ S 1
ACCUMULATOR FLAGS ACCUMULATOR FLAGS
& £ A’ e
8 c g | c i
- GENERAL
o : % I & \ PURPOSE
AEGISTERS
H L W I k" |
INTERRUPT MEMORY
VECTOR REFAESH
| R
INDEX REGISTER IX
SPECIAL
PURPOSE
INDEX REGISTER IY AEGISTERS
STACK POINTER SP
PROGRAM COUNTERPC |
-

Z80 Registers

The A register, or accumulator, is the central register and is used in most
operations. The F register contains flags, or bits that are set to 1 when
certain results of operations occur. The flags are C,Z,P/V,S,N,H.

C=carry flag. C=1 on overflow of arithemitic operations.

Z=zero flag. 2Z=1 if result of operation is zero.

S=sign flag. S=1 if the MSB of result is 1.

P/V= parity or overflow flag. Por parity P/V=l if the result is even, 0 if
it is odd. For overflow, P/Val if operation produces overflow.

H=half carry flag. H=l if add or subtract produce carry or borrow from bit 4
of the accumulator.

N=add/subtract flag. N=1 if the operation was subtract.

The flags are used for conditional branch instructions. In the mnemonics
branch occurs on: Z=zero, NZ= not zero, NC= no carry, C= carry, PO= parity odd,
PE= parity even, P= plus, and M= minus.

The B,C,D,E,H, and L registers are general purpose and are used
individually as 8 bits in some instructions and in pairs (DE, BC, HL) as 16
bits in others. The I (interrupt vector) and R (memory refresh) registers are

for special purposes and can be ignored for most applications. The IX and IY
registers are 16 bit index registers that are used in some instructions to
point to and step through tables etc. The SP (stack pointer) register points to
the memory location that is the top of the stack, a last-in-first-out memory
area similar to the stack in BASIC that stores addresses to return to after
GOSUB's, etc. The PC(program counter) register points to the next location in
memory for execution of machine language instructions. All of the special
purpose registers (F,I,R,IX,IY,SP,PC) essentially take care of themselves in
most short programs and can be ignored.

ADDRESSING MODES

The most complicated aspect of the Z80 is the addressing modes. The
address in RAM or the 280 registers can be specified in various ways. The
following types of addressing are described and illustrated with examples. To
understand the examples better it will probably help to look ahead where
mnemonics are described. An important convention to understand is that if a
register or number is enclosed in parentheses, eg. (HL) or (nn), then the
number used is the number stored at the address in RAM given by the register or
the number following the op code.
IMPLIED ADDRESSING

In this mode the address is implied by the instruction. Examples are " LD
A,B" which copies the B register into the accumulator, and "AND H" which ands
the H and A registers, the A register being implied.
IMMEDIATE ADDRESSING

In this mode the number to be used is specified in the machine code.
Examples are "LD A,n" which copies the next number in RAM into the accumulator,
and "LD HL,nn" which copies the 16 bit number nn into the HL register.
ABSOLUTE ADDRESSING

In this mode the address in RAM to be used is specified in the two bytes
following the op code in machine language. Examples are "LD A, (nn)" which
copies the contents of the memory location with address nn to the A register,
and "JP nn" which jumps the program to address nn. The 8 bit numbers of the
address are put in memory in reverse order with the low order byte before the
high order byte. Thus the instruction "JP 34A8" in machine code is "C3 A8 34"
(in hexadecimal).

RELATIVE ADDRESSING
In this mode the byte following the op code is a two's complement number

witich is added to the program counter + 2 to cause a relative jump. An example
is "JR z,e", jump relative on result zero. Values of e from O to 7F cause a
forward jump and values from 80 to FF cause a backward jump. The disassembler
calculates the address jumped to.

INDEXED ADDRESSING

In this mode the address is formed by adding the byte following the op
code (called the displacement, or d) to the number in an index register (IX or
I¥). An example is "LD A, (IX+d)" which loads the number in RAM location
specified by adding the contents of index register IX to the displacement d
into the A register.
INDIRECT ADDRESSING

In this mode the address is the number in a 16 bit register pair (BC,DE,
or HL). An example is "LD A, (BC)" which loads the contents of the memory
location specified by the BC register into the A register.
BIT ADDRESSING

A single bit in a byte may be set to 1 (SET), reset to 0 (RES), or tested
to set the zero flag (BIT). Various addressing modes may be used to specify
the byte. Examples are "SET 3, (HL)", "RES 4,A" and "BIT 7, (IY+d)". The
register after the mnemonic specifies the byte to be acted upen.

INSTRUCTION SET
After addressing modes, all there is to learn about the Z30 is the
instruction set mnemonics. A list of these with definitions follows.

ADC Add with carry two specified registers. 8 bit additions are made
between the A register and any other register or memory location with the
result left in the A register. 16 bit additions are between the HL register
and other 16 bit registers with the result in HL. In each case the carry flag
is added to the result and the carry flag is set if the result exceeds the size
of the register.

ADD Add without carry. This instruction is similar to ADC except that the
carry flag is not added to the result. The carry flag is set if the result
exceeds the size of the register.

AND Logical "AND" the A register with the specified register, number or
memory location. Logical AND gives a result where bits in binary are 1 only if
they are 1 in both numbers. For example, in binary 10110001 AND 01101001 =
00100001, or in hexadecimal Bl AND 69 = 21, or in decimal 177 AND 105 = 33.
_BIT tests the specified bit of the register or memory location addressed
and sets the zero flag if the result is zero.

_CALL Call subroutine. The program counter is stored on the stack and the
address given after the CALL instruction is loaded into the program counter.
CALLs may also be conditional.

CCF Complement (reverse) the carry flag.
_CP Compare register or memory location with the accumulator. Sets zero flag

if the numbers are equal.
CPD Compare with decrement. A is compared with the memory location
specified by HL and HL and BC are decremented by 1. The zero flag is set if A

= (HL).

CPDR Block compare with decrement. Like CPD but continues until a match is
found (A = (HL)) or BC = 0.
CPI Compare with increment. Compares A with (HL), sets zero flag if equal,

increments HL by 1 and decrements BC by 1.
CPIR Block compare with increment. Like CPI but continues until A = (HL)
or BC = Q.

CPL Complement accumulator. All bits that are 1 are set to 0 and vice

versa.
DAA Decimal adjust accumulator. Used in binary coded decimal arithmetic.
_DEC Decrement register or memory.

DI Disable interrupts.

_DJNZ Decrement B and jump relative on nonzero.

EI Enable interrupts.

_EX Exchange specified registers.

EXX Exchange BC, DE,.and HL registers with the alternative set.

_HALT CPU executes NOP's until an interrupt or reset.

IM Set interrupt mode.

IN Input number to register from port specified by the C register, (C), or
number, (n).

INC Increment register or memory location.

_IND Input with decrement. Loads (HL) with input from (C), decrements B and
decrements HL.

INDR Block input with decrement. Like IND but repeats until 3 = 0.

_INI Input with increment. Loads (HL) with input from (C), increments HL
and decrements B.

INIR Block input with increment. Like INI but repeats until 3 = 0,

_JpP Jump.

JR Jump relative.

LD Load or copy the contents of a register or memory location to another.
_LDD Load with decrement. HL loaded to memory location (DE), DE, HL, and
BC are decremented.

LDDR Block load with decrement. Like LDD but repeats until BC = 0.

_LDI Load with increment. (HL) is copied to (DE), DE and HL are incremented
and BC is decremented.

LDIR Block load with increment. Repeats LDI until BC = 0.

_NEG Negate accumulator in two's complement.

Noe No operation. Fills in spaces in machine code and delays about 1
microsecond.

OR Logical OR accumulator with specified register. Logical OR acts on bits.

For example,in binary, 10101100 OR 00010111 = 101111l1l. In hexadecimal, AC OR
17 = BF. In decimal, 172 OR 23 = 191 (same example each time). 1 OR 1, 1 OR
O,and O OR 1 all equal 1. O OR Q0 = 0.

OTDR Block output with decrement. Like OUTD but repeated until B=0.
_OTIR Block output with increment. Like OUTI but repeated until B=0.
ouT Output register specified to port given by the C register, (C), or
number, (n).

oUTD Output with decrement. The memory location addressed by the HL
register is outputted to the C port. The B and HL registers are decremented.
OuTI Output with increment. The memory location addressed by the HL

register is outputted to port C. The HL register is incremented and the B
register decremented.

PoP Pop specified register (16 bit) from stack, as in BASIC.

_PUSH Push register (16 bit) to stack.

RES Reset. The specified bit is set to zero.

_RET Return from subroutine. The program counter is popped from the stack,

low byte, high byte.

TI Return from interrupt. Like RET.
RETN Return from non-maskable interrupt. Like RET.

]

RL Rotate register left through carry flag.

_RLCA Rotate accumulator left with branch carry.

RLC Rotate register or memory location left with branch carry.
_RLD Rotate left decimal (for BCD).

RR Rotate register or memory location right through carry flag.
_RRC Rotate right with branch carry.

RRD Rotate right decimal (for BCD).

_RSp Restart at location p*8 in zero page.

SBC Subtract with borrow.

_SCFr Set carry flag.

SET Set to 1 specified bit of register or memory.

SLA Arithmetic shift left. This multiplies the register or memory location

by 2.

SRA Arithmetic shift right.

_SRL Logical shift right.

SUB Subtract register specified from the accumulator, the result appearing

in the accumulator.

XOR Exclusive OR accumulator and specified register. For example, in binary
10110100 XOR 10001110 = 00111010, or in hexadecimal B4 XOR 8E=3A, or in decimal
180 XOR 142 = 58. XOR A is used to set the accumulator to zero.

How do you use all these codes? To start with you hand assemble some
machine language. Some people think you need an assembler to write machine
language, but starting with an assembler would be like starting to write
english with a word processor. Its unnecessarily complicated.

To illustrate a short machine language program I will show a way around
the limitation in BASIC that POKE will not work above 54160. To POKE to higher
memory the load commands of the 280 work fine. 1In assembly language we write a
subroutine as follows:

LD A,n
LD (nn),A
RET
The code for LD A,n found in the alphabetical assembly language table that
follows, is $3E (or 62 in decimal) followed by the 8 bit value of n. The code
for LD (nn),A which loads the first n that is now in the accumulator into
memory location nn, is $32 (or 50 in decimal). The code for RET (return from
subroutine) is $C9 (or 201 in decimal). We can now POKE the decimal numbers
into pokable memory as shown in the first five lines of the following program:
5 REM HIPOKER
10 DATA 62,0,50,0,0,201
20 FOR x = 0 TO 5
30 READ d
40 POKE 210+x, d
50 NEXT
60 INPUT "start address high byte"; adh
70 INPUT "start address low byte"; alo
80 INPUT "number”; n
90 POKE 211,n :POKE 213, alo :POKE 214, adh

11

100 CALL 210

110 PRINT n; " "; PEEK(adh*256+alo)

120 alo = alo+l

130 GoTO 80
In this case the program was stored in an unused part of zero page. You can put
them anywhere they do not erase a necessary part of BASIC or the operating
system (the copywrite statement and "hi Cathy" on page 4, for example). Most
programs would be best in the same area as shape tables, above BASIC and below
the stack (see pages C-16 and C-20 in the BASIC manual). Such an area must be
reserved with a HIMEM command at the beginning of the BASIC program.

It is not necessary to PUSH registers on the stack at the beginning of a

routine called from BASIC and POP them at the end, because the CALL routine
does that for you.

Since the limitation to the POKE command is not natural (is not in Apple
BASIC, for example), and was simply added by Coleco programmers to try to
impede Hackers, it can also be removed by reversing the limitation in BASIC. In
our version this is at 3Fl5, and simply POKing 255 into 16149 and 16150 will
allow you to POKE any number in the 64K RAM.

The following table gives a complete list of op codes in alphabetical
order which can be used for hand assembly of short machine language routines.
The disassembler in this book could also be modified to be a simple assembler
to look up op codes for you.

* NOTE: LOMEM is permanent until changed by a new LOMEM
command. HIMEM is reset each time a program is RUN.

"y
s

Al
X1
"

wranN
")
(R}
o
(1N 1]
3
a
1212
(o]]
'
z

I

L]

L[]
AV v
AV14S)
X1'1d4S)
W 14S)

-

d5
1
Al
X1
m

(AP])
wixn
tnn

NI
B
NI
N
N
b L]
NI
NI
oM
INI

ONI
INI
INI
INI
SN
NI

230
J30
230
230
230
230
230
2340
vl
142
140
HidD

neng

X 4

nl4

(XA E]

£Zaa

X4

L4

N

€

ri

20

o

L

o
Soread
SOvLoQ
vE
8903
09113
8503
0503
Bro3
oro3
Bta3
3503
9503
9r03
9t
60

S0sTO4
S0sSL00
St
4

i
1vQa3
(L E]

Pl
X
LN

wu

-:-.N
.-—.cﬂ
wiyg
.!.-.&
N
N
"'y
(U1]

e

"wie

EN

ae

e

e

v
ANt
e
e
19

LN]

39

a9

29

a9

v
[LIVYTR]
Py
(RIS]
18

ns

ER]

as

Js

s

v's
PeANNS
(LI 15]
[RILTR]
Ty

we

Ir

Hadd
042
420

42
4
42
42
42
42
4
4
4D
42
420
11wd
11vD
1wd
1Ivd
1D
11vd
1IvD
1D
1ivd
1a
1na
1na
18
118
1a
18
1a
1ne
1na
na
1a
18
18
1a
1e
1na
1na
nea
1na
1na
1"na
1na
(1]
na
1"a
na
[11:]
18
1a
1na
118
na

9=4¢

6803
6v03
0z34
aa
I8
a8
va
68
' L)
48
5S03804
S03800
EL]
€
SOvR(D
S0¥800
Sover3
S0v823
soverd
Sovard
SorAYQ
S0¥824
S0r820
e
1l
;14
viad
680
[:[4:]
482
31508004
3508000
3¢8D
b1
read
(748
wad
(F1:]
oad
L8l
9508004
9¢LS0AD00
:14:
a98d
2980
a98d
¥98)
6980
898D
4980
39508004
39500000
3980
S980
r98d
€980

'u=Qc

‘uu=50v8

av

2

ar

vy
wPealY
waxny
e
e

ne

3c

ac

) 5

ac

Ve
PrANE
wPiaxnNe
1me
e

L1 4

E I

at

X 4

ar

v
wPrANT
Pexnz
e
T

Wi

EN|

a’

2

wi

vl
PrANL
Pt
(RITIN)
T0
Ho
EN
ao

20

A0

v'o
wrAND
wixio
tmro
u

'P=G0

18
1a
ne
1a
na
19
1na
e
e

18
118
119
e
1e
19
na
e
118
118
une
1a
1e
1na
nae
1na
118
118
1na
119
18
119
ne
118
1e
ne
1na
119
na
18
1ma
1na
18
na
119
1na
ne
na
NV

98D
1982
098D
{980
99508004
99904000
99820
asad

© 058D
asad
v38d
698D
8582
45D
35508204
36508000
3982
S580
¥sad
£sad
980
1582
0sad
582
95508004
95508000
9582
arad
el o]
arad
vrad
6¥80
arad
4¥8D
3IrS08204
3¥508000
Irad
SY8HD
rrad
crad
v
1v82
orad

(3 4:0]
rS0a204
ars0ad00
14
0793

Pran
[LI34]]
tnn
ds' Al
AV AL
I0°AN
on'a
45’ x1
XX
ELR
20' %1
45 H
R []
30 ™
28
u'y
Ty
MY
v
av
v
av
v'y
LIV UIR
oy
'
45" M
"wom
30° M
28 Mm
w'y
T
nwv
ER
av
v
nv
vy
PrANY
PexIl'Y
[RIURY

MY
20v
a20v
20v
J0v
Jav
20v
20v
20v
20

5v
Y
£v
(A
v
ov
X
S09v04
S09v0Q0
9v
6CO4
6204
6104
60414
6L00
6200
6100
6000
6C
6Z
61

T 029D
58
v8
a:}
4]
18

4]
S0980 4
509800

via3
Y93
v503
vro3
0z3d
ae

o8

ns

ve

68

Ae

18
503804
S03800
EL]

(bo112 jJo AsejanoD) seapod do 8%

13

PrANE
PrXINE
LINE
1z

ne

T

(k4

e

ne

vz
ANz
Pixn'z
e

wPaano
o
[RITIN]
Al

X

m

Jq

oM

v

Al

b1

m

0

28

EL

Vi
i
wio
ENe]
a1
210
wio
Vi)

S
53y
S
S3H
S
S3u
53y
S
sau
Sy
S
S3H
S3In
S3IH
EEL
S3au
Sy
S3IH
S3IH
s3Iy
S3H
S3IH
S3H
S3y
S3H
S3an
SIH
Sy
S3IH
S
S3Ian
S3y
53y
HSNd
HSNd
HSNd
HSNd
Hsind
HSNd
d0d
404
d0d
d0d
40d

nno
aimno
1no
1no
1no
110
1o
1nao
1o
no
wiio

IGS08D04
A6508200
368D
G680
¥68D
EGAD
68D
168D
0682
168D
96500004
B6SOADN0
968D
agad
2880
aaad
vaad
6880
|8ead
488D
38500204
38500200
388D
SAEAD
88D
£88d
i8md
[:1: 0]
0882
1880
98508004
98508200
9880
5304
5300
53
50
S0
54
1304
1300
13
a
(e}
i4
tvo3
AvO3
ozca
6203
1903
6503
1503
63
(k]
6L03
a3

13l)

HOL10 L (V]

u Ho 0294

1 HO 58

H Ho (4]

3 Ho ca

a wo (4]

2 vo 19

a Ho o8

v HO 8

(VY] HO 5090804

XN Ho 509800

twn yo 94

40N 00

LELT (LU E]

wal 0803

1 ova3

Haal 8003

aan Bv(13

wi'gs ol SOVBIE

AVdS o 6404

x1'dS al 6400

N dS a1 64

wyds al SovanAL03

v’y a1 4v03

vy al 0z

™ ol 09

(1l al 29

ER ol a9

al ol v9

2 ol 69

i 89

AR %

(LY 1] ol 503914

eI al 503900

1M ol 39

u Ay ol SOpBIZ04

)y Al ol SovBvIOd

w'y) al SoP8IZ00

(v X1 ol SOvVevZOa

vl al tv03

LR 1] ol SOVBIZ

(L 1] al SovevZ

i al 0z9z

™ ar 59

m R B

an ol 79

w8 8

vall al 9

WA ol 5099014

wixn'm (1] 509900

I al 99

w3 al o0zt

13 ol us

wa ol 25

33 o as
a=5z 'u=0¢

a3

23

a3
v'3
LN
(L]
3
wu' 30
(v}’ 30
u'qg

Ta
HQ
30
oa
20
a0
v'a
Pran'a
Prxtr'a
tmra
u'y

12

H2

3D

a’a
29

a2l

v
PrAND
(LR A1
o
uw'og
[
vy

e

(R]

ER:]

an

29

ag

v'a
(LIFNTN:]
(LI ATN:]
a
Hy

wy

Vv

'

nv

ER

av

v

v

'y
'y
ANy
'y

‘uu=50¥8 ‘P=S0

al
ol
al
an
al
al
al
al
al
al
al
an
al
an

o
ar
an
al
al
al
ol
al
al
(iR}
an
ol
o
a1
o
an
an
o
o

al
ol

an
al
al
aln
o
al
ol
an
o

v5

65

8BS

45
S03504
S03500
35
sorail
SOPHASO3
0z91

S5

L]

€5

[a

IS

0s

LS
G095 4
S09%5(1)
95

0z30
ar

or

fAr

v

[i14

;14

iF
503v04
S03r00
ELJ
SNrRI0
Sor8aAr03
090

Sy
L

S09r0 4
S09v00
9@
15013
0z3c

oL
15013

o

Ll

vi

6t

at

"
SOVAVE
EUETLIE]
SO3LO0

'y
1’y
[1114
ds (v)
AN ()

30w
28 (v)
o)
AN
T Al
WP AN
AN
a’pan
2P Al
LALIVN]]
viri Al
wipexi)
Tirexi)
Hirixi
ERL A
a‘pxi
21X
airixi
CA LTV
winn
T
INRIT
AL
atnn
200
winn
v
v
wm)

"

al

al
al

ol
an
ol
al
an
an
al
o
an
a1
(0]
an
o
o
a0l
an
ol
ai
ol
an
ol

an
(48]
ol
an
ol
an
ai
al
o
o
ai
nr

daf
HiNI
(L)
HONI
UL

u

wi
w0

SOVHELOI
SOPRZICNY
GOFBLZCN
GOVRIL
SOPBES(3
SOvHEFI
SOFAZE
0ZS09E01 1
S05L4014
SOrit4
GOLIAd
G0ZL03
sSOL0
5004014
L T]
0509000
SOGLO0
SO0
SOCL00
SOZLO0
S0LL00
SO0/ 00
S0 00
[iT4: 1M

5¢

wi

£

(43

"

o

o

Al

wn

zm

j14:14

1oL
0L
128
GOVHAV)
S0v8C
S0vAv 3
GOPALA
SOVRED
SOVRLO
SOvEv)
GOvHY
LELIN]

(R L4}

63
GSOPHED
TAlliR}
[a-Li)
v
vyl

(Po11%2 3© Aso3anoD) seopoo do 08%

sl ws= o

" AN
(L 1]
rnn

wean
[41
(R0}

1

H

1

u

D

8

v
(Y]
waxi
(R

1

"

1

HOX
Hox
Hox
HOX

Hox
Hox
HOX
HOX
Hox
Hox
ans
ans
ans
ans
uns
ans
ans
ans
ans
uns
uns
s
Tus
s
s
s
s
s
s
s
s
vus
vus
viIs

0z33

av

ov

av

Vv

6v

av

av
S03Iva4
S03vaa
v
0Z90

56

6

6

6

16

06

{6
S0960 4
S09600
96
acad
20800
0|
via)
6E8D
BEAD
4EHD
LSO 4
3Cs08000
380D
aced
DZHD
aza)

4

]

v
[P}
P X1
(R}

do0wI s

wean
wyxn
1)
T

Wi

EN

at

2

8t

v
Peane
Pyxie
mre
19

v'e
[LIPNIE]
P9

e
1S

e

s

s

2%

s

Vs
wiAlS
wixis

mn's

'y

ne

v

u'v

e

av

vy
WPiAlY
mxie

vus
vus
VHS
vus
vus
vHSs
vus
vis
vis
vis
vis
vis
v1is
v1is
Vs
vis
vis
138
135
138
138
138
135
135
138
13S
135
138
138
138
13s
13S
13§
135
135
135
135
135
135
138
135
138
135
135
138
1158
135
135
135
135
135
138
135
135
11s
115

vied
6282

BZHD

4280
4508004
32504000
El4:]
Szad

({4 k]
€za
[£4: 8]
1Zad
0zad
(Zad
92508204
92508200
9z8d
a48d
2482
8482
V480
6480
8482
4482
34508204
34508200
3482
5480
v480
£480
18D
1482
0482
118D
94508004
94508200
5480
a3ed
238D
a83nd
v3iaed
6380
8382
4380
33508204
43508200
3380
5380
¥180
£3wd
2380
1380
030D
38D
93508204
93508200

9=3¢

(ni'v
e

Wwe

ENY

a't

2€

v'C
PYAINE
PoINE
m'e
a'c

e

nwe

ENA

[iF'4

2L

o'z

v
ANz
XNz
e
(N}

wi

EN |

a

21

]

v
[CIPNINY
P
(RITIN]
1o

"o

30

ao

20

uo

v'o
[LIPN X
Pl
imo

45 M
"Wy
307
28
v

nwv

v

av

RRY

v

vy
Ay
"mxirv
thn'v

135
135
13s
138
138
135
135
13s
138
13S
13§
13§
135
138
13§
138
135
135
135
135
13§
1318
135
138
135
135
135
135
135
13s
138
138
135
13§
135
135
138
138
135
138
135
405
ons
aus
285
O8s
Jas
BN
J0s
ams
JHs
J0s
JHS
aus
NS
ans

9340
aaad
2082
8080
vaad
608D
40082

30508204
30508200

3082
8042
su8d
¥(182
Laed
082

1082
o0a8d
{08l

90508204
90508200
908D
adad
2080

8280
voad
6280
8080

408D

3050820 4
325080040

3080
$08D0
»28D
£282
ael. b]

1282
004D
1280

90508204
90508200
908D

{c

(AL E]
9013
503
va3

Le]]

26

L

ve

66

o6

16

SOIG 3
S0 3600
46

'u=Qg ‘uu=50¥8 ‘P=S0

u'y
HBL
HOE
[11:74
HOZ
nat
HoL
HBo

N N-E

<oVl wITJ

[LI¥N]]
X
(1111

oW wI 4

AN
(L]
1H)

J8S
154
154
154
154
154
154
154
154
ouy

vouY
Juy

Jud
Jud
JuY
Jud
Jud
oud
Juy
U
JHH
vdd
:[']
HH
1]
L]
2 1%)
Hy
HH
HH
1]
Hd
ay
LAl
Y
e
27
Al
27y
2
Al
2y
2
bl
vy
i
alt
L]
i
il
it
il
™
]
]
Ni3Hd
1134

0z3a
44
(&
43
3
40
La
42
0
1903
40
0082
2082
8082
vo0ad
6082
8082
4082
30508204
30908200
3082
41
aled
2180
818
V12
6182
8182
4182
31508004
31508000
3180
4903
Lo
5082
08l
€082
08l
1082
0082
toad
90508204
90508200
9082
0
S182
riad
€182
(41
1182
0182
(4]
91508204
21508200
2182
Sr03
aro3

PrAlle
PXIre
1HI'9
'S

134
134
134
134
134
139
134
134
134
S3y
S3y
§3y
EEL
S3d
S3d
S3d
S3y
Sy
S3u
S3au
S3”
S3d
S3d
S3y
S3d
S3y
S3d
S3y
S3y
S3y
S3y
S3u
S3y
$3y
S3uy
CEL
S3y
S3y
S3y
$3y
S3u
$3d
EELY
S3d
LEL
S3y
Sy
S3y
S3y
S3y
S3y
S3y
53y
S3y
S3u
EELL

82

03

e3

[E

02

00

84

80

62

aead
2882
|88l
vaad
6882
e8ad
4882
38508004
38508000
3880
5880
r8ed
£a8d
a8l
[4:1: 0]
0882
(982
98508204
98508200
9882
avad
oved
aved
vved
6v8D
8vad
4vad
3vs08204
3v508200
avad
Sved
yvad
€ved
Tvad
1vad
oved
{vad

9v 508204
9v508200
9vad
Q682
2680
8682
V68D
6682
868D
4682

(fo11z 3jo As@3an0)) SIPOD do 042

15
Chapter 4. A Disassembler

The disassembler listing which follows will translate machine code into

::::f::yli::tf:;:e;p ::d:s essentially several tables of pointers by which the
points to the assembly language mnemonic and register

or address information. These tables are entered as data statements of letters
and symbols which are converted' to numbers by the ASCII code because it is
shorter and requires less typing. The information is then put into string
arrays which are: nm$= mnemonics, t§= names of registers etc.; as(x), bsS(x),
eS(x) which have pointers to nm$,t$,t$S, respectively;ds(x),eS(x) and £§(x) like
a$,b$,cS when the op code begins with ED; and g$, h$, i§, for op codes which
begin with CB. Line 23 prints the address in hexadecimal. Line 25 prints the
op code. Lines 30-60 check for special codes and gosub appropriately. In
lines 100 and 110 n is the number of bytes expected following the op code. The
variables pa,pb,and pc are the pointers as numbers extracted from the string
arrays. Lines 3000 to 4000 fill the string arrays when the program is first
run. Lines 50C0 to 5095 are a decimal to hexadecimal conversion subroutine.
Lines 6000 to 6020 calculate and print relative jumps.

When you run the program it asks for a starting address, which should be in
decimal. It then prints out the disassembled listing until you stop it by
typing control s or c¢. If you have fan-fold paper you can leave it going for
hours (plan on leaving the house if you have sensitive ears). To avoid
disassembling ASCII, tables and garbage etc., consult the memory map and print
out relevant areas of RAM with printmem first because it is much faster.
Typical output lines are as follows:

gtart addr

7344 EC00 CS PUSE BC

57345 2001 EB EX DE,HL

57346 002 CDEQET CALL nn E1E9

57349 Z005 69 LD L,C i
57350 EQO6 Cf POP BC

57351 EQO7 EB EX DE,HL

57352 2008 T9 D A,C ¥
57353 ECQS 4B D c,BE K
57354 EOOA 50 ID D,B P
57355 Z00B 14 oic D

57356 EOOC 47 1D B,A G
57357 EOOD B7 OR A

57358 EOOE 2806 JR %z,e EO16 (
57360 E010 EDA3 OUTI

57362 E012 00 NOP

57363 EO13 00 NOP

57364 E014 20FA JR NZ,e EO10

57366 E016 15 DEC D

57367 E017 20RT JR NZ,e EO10

57369 E019 C9 RET

57370 201A C5 PUSH

57371 EO1B EB EX DE,HL

57372 EO1C CDETE1 CALL nn B1ET

57375 EO1F 69 D L,C i
57376 E020 Ci POP BC

57377 2021 =B EX DE,HL

57378 2022 179 LD A,C 7
57379 E023 4B LD C,E K
57380 E024 50 LD D,B P

57381 E025 14 INC

The address is first printed in decimal and then in hex. The opcode is then
printer in hex, followed by the mnemonic and any numbers or jump addresses in
hex. On the far right the ASCII of the code is printed to help identify
tables, etc.

If you type the program in and it runs alright you may still have made
an error by adding an extra data element. To check for that type "? i$(255)" in
the immediate mode after running the program. The result should be "@".
Checking for substitution errors could be done by driving the program with a
for-next loop to generate all op codes and comparing them with the listing at
the end of chapter 3.

There may be more efficient ways to write a disassembler for the Z80, but
this one works and was enough trouble to write that I am not going to change
it. It has some illogical aspects, such as the listing of the mnemonic CPIR
twice, that are slightly embarrassing, but still not worth changing. On the
other hand it can easily be modified to input hex numbers, etc. which you are
welcome to do. It could even be turned into an assembler by creating string
arrays of complete mnemonic statements (complete lines) to be searched through
for a match to lines typed in. It would be slow but useful . The major work of
designing and typing in the data for the op code tables would be done already
for the disassembler. If you work on it you are likely to discover the deadly
Coleco data-bump bug that adds a space in front of data lines when they are
saved on tape. It sounds harmless, but after a few sessions of revisions
followed by saving the new version you will find that data is pushed off the
end of the line and lost, causing an out of data error the next time you run
the program. To avoid this you must go throuth the whole program and edit out
the extra spaces with control right arrow every now and then.

]

2 REM Z80 disassembler by P. Hinkle,March 1984
5 GOTO 1000

10 INPUT "start addr™; ad

11 PR #1

20 PRINT: op = PEEK(ad)
21 n = 0: nl = 0z de = 0
22 PRINT ad; TAB(7);
23 GOSUB 5000
25 GOSUB 120
30 IF op = 203 THEN GOSUB 200: GOTO 150
40 IF op = 221 THEN GOSUB 400: GOTO 150
50 IF op = 237 THEN GOSUB 600: GOTO 150
60 IF op = 253 THEN GOSUB 800: GOTO 150
66 GOSUB 70
67 GOTO 150
70 pa = ASC(a$(op)
80 pb ASCEbSEOb;

pe = ASC(c3(op
100 IF pb = 78 OR pb = 94 OR pc = 78 OR pe = 94 THEN n = 2: ni = 2
;10 1131:?-86 OR pb = 71 OR pb =89 OR pc = 86 OR pc = 71 OR pc = 89 T™EN n
= 20 =

115 RETURN

118 ad = ad+1: op = PEEK(ad)

120 PRINT MIDSExs, INT(op/16)+1, 1);

130 PRINT MID$(x$, (op 18-mr(ou/153)*15+1, 1);

140 RETURN

150 IF n > O ™EN ad = ad+1: n = n-1: op = PEEK(ad): GOSUB 120

160 IF n > 0 THEN ad = ad+1: op = PEEK(ad): GOSUB 120

170 PRINT TAB(23)

180 PRINT nm$(pa-49); ‘MB(29J' t8(pb-64);

181 IF pc = 117 THEN GOTO

183 PRINT ","; t3(pc-64);

185 IF ni = 2 THEN PRINT SPC(4): GOSUB 120: op = PEEX(ad-1): GOSUB 120

186 IF pa = 77 OR pa = 64 THEN GOSUB 6000

187 pp = P0S(0)

i i §
IF pp < 20 THEN pp = pp+31
PRINT SPC(60-pD);
IF n1 = 2 THEN GOSUB 5100
IF nt = 1 THEN GOSUB 5100
GOSUB 5100
ad = ad+1: GOTO 20
REM CB routine
GOSUB 118
pa = ASC(g$(op))
pb = ASCEhS%opB
pc = ASC(is(op
GOSUB 100: RETURN
REM DD routine
GOSUB 118
IF op =O203 THEN GOSUB 118: GOSUB 200! dc = 1: GOTO 450

GOSUB 7

IF pb = 95 THEN pb 96: IP dc = O THEN GOSUB 118
IF pb = 72 THEN pb 76

IF pc = 95 THEN pe

IF pc = 72 THEN pe
RETURNY

REM ED routine

GOSUB 118

pa = ASC(d8(op-64))

pb = mcfessop-énﬂg

pe = ASC(£8(op-64)

GOSUB 100: RETURN

REM FD routine

GOSUB 118

IF op = 203 THEN GOSUB 118: GOSUB 200: dec = 1: GOTO 850
GCSUB 70

IF pb = 95 THEN pb = 97: IF de = O THEN GOSUB 118

?fg: IF dc = O THEN GOSUB 118

852 IF pb = 72 THEN pb = 77

854 IF pc = 95 THEN pc = 97: IF dc = O THEN GOSUB 118

856 IF pc = 72 TdEN pc = 77

860 RETURN

1000 x8 = "0123456789ABCDEF"
(Z(JJO?I.EJ;TA A,B,C,D,E,E,L,E,EL,BC,DE,SP,Ix,lY,nn,M,NC,NZ,P,PE,PO,Z,B,{S?),(C),
n),

2001 DATA (rr), (8C), (DE), (nn), (EL), (IX+d),(I7+d),0,1,2,3,4,5,6,7,I,R,008,
08H,10H, 18E,20H,28E,30H,38KE,?, ,AF,AF",(A), (HL)

2002 DATA ADC,ADD, AND,BIT,CALL,CCF,CP,CPD,CPDR,CPIR,CPI,CPL,DAA,DEC,DI,Dd
NZ,=2I,BX,EXX,HALT

2003 DATA IM,IN,INC,IND,INDR,INI,INIR,JP,JR,LD,LDD,LDDR,LDI,LDIR,NEG,NOP,
OR,0T™R,0TIR,0UT,0UTD

2004 DATA oUTI,POP,PUSH,RES,RET,RETI,RE™ ,RL,RLA,RLC,RLCA,RLD,RR,RRA,RRC,RR
CA,RRD,RST,SBC,SCF

2005 DATA SET,SLA,SRA,SRL,SUB,XI0R,RETI, ?,CPIR

2010 DATA T,N,N.G,G,) ,N,d,B,2,N,),G-,).N,i,C.N,N,G,G,>,N.b,ﬁp2.Nr>:G»>:N-8;
4,¥,N,G,G,>,N

2011 DATA =,4,2,%,>,6,>,N,<,M,N,N,G,6,>,N,n,M,2,N,5,6,>,N,6

2012 DATA ,¥,N
2013 DATA y,¥,N,N,N,N,N,N,N,N,N,N,¥,N,N,¥,N,N,N,N,N,N,D,N,N,N,N,N,N,N,N,N
2014 DATA 2,2,2,2,2,2,2,2,1,1,T,1,1,1,1,T,I‘,I‘,r,r,r,r,r,r,l,l,l,l,l,l,l,l
2015 DATA 3,3p3r3:3p3,3v3r395f933:3rar3:st’UrU:UsUrUsUlU’7r7-7s7t7a7-7t7
2016 DATﬁ .![fI‘lI‘!S!\’2’k'A?A’I"’tf5f5f1'k!.F[’I‘!x’st\'rik!‘!ch’FJB!tll’k
2017 DATA 2l D BiSa N 3.1, 5 I T B b mity W, 0, 05 7,85 N U, 1 BBk 45 5 6, T
20§0 DATA u:I,\tIfAiﬁhﬂtu,vyﬁsarIsB’Bss!u'ver]rJtc!c,c,urvpﬂya;JiD,DrD»u
Q

’

2621 DA.TJ\ .’H’E’EIE’uQUrE’HfH’F!F!P’ulP’K'“IK! r_r !urB!H!a!Kf@Pg’o'u
2022 DATA A,A,A,A,A,A,A.A,B,B,B,B,B,B,B,B,C,C,_C,B,E,C,C,C,D,D,D,D.D,D,D,D
2023 DATA E,E,2,8,B,E.,.,k,?,?,?,F,P,F,PP, _,_,_s_r_r_s4,_,0,2,9,2,2,2,2,2
2024 DATA 2,2,2,2,0,2,0,2,9,9,2,9,0,9,2;9,4,3,C,D,%,F,_,?,9,9,2,9,9,0,2,3
2025 DATA A.B.C.D,E,F,_,0,A,B,C,D,E,F,_,@,A.B,C,D,E,F,_,Q,A,B.C,D,E.?._‘,@

2027 DATA Q,I,q,N,Q,1,2,1,0,u,0,4,0,8,8,n,P,J,P,Y,P,J,G,n,B,u,3,3,B,%,9
2028 DATA o,?H,T,w%,1,H,G,p2,S,_,S, J,s,%,6,q,R8,v,R,u,R,v,,r,0,X,0,u,0,u,G
,S

2030 DATA u,¥,?,u,u,u,G,u,w,I, \ u,u,u,@,a,u,x, O,u,u,u,G,u,u,J,],u,u.u,G.u
,V,N,5,u,u,u,G,u,7, h:

2031 DATA “,a,4,4,G,u,v,N,2,u,u,u,G,u,7 ,K,%,u,u,u,G,u

2040 DATA A,B8,C,D,E,F,_,?,A,B,C D,A,P, ,2,A,3,C,D E,‘, _,9,A,B8,C,D,B,F,_,?
2041 DATA 1,3,0,D,E,F,_,O,A,B,C,D,E,P,_,O,A,B,C,D,E,F,u,@,A.B,C,D,E,F,_,°
2050 DATA A,B,C.D,E,F,_,O,ﬁ,B,C,D,E,F,q,c,u,u,u.u.u.u,u,u.A,B.C,D.E,?,_,O
2051 DATA u,u,u,u,u,u,u,,u,1,1,1,2,4,4,4,u,u,u,4,u,u,4,u,1,u,u,u,4,u,u4,u
2060 DATA u,u,¥,u,¥,u,G6,u,u,u,¥,t,Y¥,u4,G,u,u,u,¥,@,¥,u,u,u,u,u,N,G,N, +,G,u
,u,u,N,H,N,u, u,u,u,u

2061 DA“A v,d,v,t,u,u,u,u,¥,u,N,u,u,u,u,H,8,u T.u,u u

2070 DATA X, l,N S, »E,N, F X ,N u,_,u,¥,?,X,1,8,4,u,8,¥,F,X,1,N,u,u,Z,
¥,?%X,1l,u,u,u,u,J,?,x,1,1,u,u,u

2071 DATA e,u u,l,N.u u,u,u1,?*,X,1,¥,u,u,u2,u,u,u,u,u,u,2,u,u,1,u4,a

2072 DATA v,u,u,u,u,u,u1,4,u,4,1,4,u,4,4,u,1,u,4,1,4,Q,;,J,Z,1,2,u,u

2073 DATA 0, 8 E I‘u u,u,u4,R,v,K,W,u,u, u,u,P,Q,I

2079 DATA A X E, ,u,u,b,J,B, ,E I u,u,u,k,C,X,H

2080 DATA *,u,u,c¢,2,0,X,8,J,u,u,d, O,E b e E,u u,u,u,u,f,X,5,u,u,u,u,u,u,u,
g,"%,u,u,u,u,®

2081 DATA X,4,K,u,u,u,u,u,u,u,u,u,u,u,4,4,4,4,u4,u,u,u4,u,u,4,u,4,1,u,u1,u,
u,u,u4,u,u,u,1,1,4,4,4,1,4,q,u,u,1,1,u,U

2082 DATA u,u,u,u,u,u,u,u,1,q,4,q,1,u,1

2083 DATA x ,A,I,I,u,u,®,u,X,8,I,",u,u,u,9,%,C,J,J,u,u,u,],X,D 7, ,u,u,u,
x,X,%,%,u,u4,u,u,u,X,?,H,u,u,u,1,u,u,u, K,K

2084 DATA u,u,u,4,X,?,K,",u,
u,u,u

5035 DATA u,u,1,u,1,u1,1,u,u1,4,1,u,u4,u4,u,u,u,,u2,1,u,u,u,4,4,u,u,u,u,u,1,u
,1,u,u,u,u

2086 ﬁATA e,¢,¢,¢,¢,¢,c,¢,h,h,h,h;h,h,h,h,a,as,a,s,a,sa,a,a,f,7,f,f,f,7,1,1
2087 DATA 0, 9,0,0,0,0,0,0,p,p,DP,P,P, 0,0, P,1,1,1,u;1,1,1,1,9,49,4,4,9,9,2,Q
2088 DﬁT.ﬂ. 494"494p4’4,4p4;4;4,4’4|4,4,4‘,4r4’4r4r4!43434!4!4!4!494!4'4’4'4
2089 DATA 4!‘4P4‘?4’!4‘!4‘!494‘!4r4,4!4)4:434!434!4!434‘!4,4,494,494;4;4;4,4,4'4

2090 DATA ,,.,,,1,1,11,,1
2091 DATA 3!]’]l}l]!].]l]tl’]!]’Il]!]!]!J’]!]t}’]’]J]f]’]’]i]l]f]’]’]’]’]

2092 DATA n,n,n,n,n,n,n,n,n,n,n,n,n,n,n,n,n,n,0,0n,n,n,0n,0,0,0,0n,0,0,0,0,0
2093 DATA n,n,n,n,n,n,n,n,n,n,n,n,n,n,n,n,0n,2,0n,0,0,0,0,0n,0,0,0,0,0,0,0,n0
2100 DATA A,B,C,D,E,F,_,9,4,8,C,D,E,F,_,%,A,B8,C,D,E,F,_,?,A,B,C,D,E,F,_,@
2101 DATA A,B,C,D,E,F,_,®,4,B8,C,D,E,F,_,0,%,%,¢t,¢t,t,¢,¢%,%,4,8,C,D,E,F,_,@
2110 DATA b,b,b,b,b,b,b,b,¢,¢,e¢,c¢,¢,¢,c¢,¢,4d,4d4,4d,4,4,d,4,4,e,0,e,¢e,e,e,0,0
2111 DATA t,£,2,%¢%%2,%,°%,2,8,8,8,8,8,8,8h,h,h,h,h,h,h,h,1,14,1,1,1,1,1,1
2112 DATA b,b,b,b,b,b,b,b,¢,¢,e¢,¢,¢,¢,¢,¢,4d,4d4,4,d,4,4d,d4,d4,e,2,0,¢,e,e,0,8
2113 DATA ft,f,£%1%,%1%1%,8,8,8,8,8,8,88,h,h,h,h,h,h,h,h,1,1,1,1,1,1, i, 1
2114 DATA b,b,b,b,b,b,b,b,¢,¢,¢,¢,¢,¢,c,¢,4,d,d4,4,4,4,d,d,e,e,e,e,e,e,0,¢e
2115 DATA ?,2,2¢%°%°%%*%%828,8 8,8 & & & h,h,h,h,h,h,h,n0,1,1,1,1,4,4,1,1
2120 DATA u,u,u,u,u,u,u,u,u,u,u1,4,u,u,u4,1,u,1,1,u,u,u,u,4,4,4,4,4,u,u,1,u
2121 DATA u,u,u4,u4,u,u4,u4,u,u,u1,u,u,u1,u,u,u,u,1,u,u,u,1,4,1,4,u,1,u,u,u,u,u
2122 DATA A,B,C D,d. ,_»9,4,8,C,D,E,?, ,9,4,B,C D,J.P, ,2,A,B,C D,u,., , @
2123 DATA B c,D,B,F,_,@, A B,C,D,E,P,_,Q,A,B,C.D.J,F, 9, A B,u, +B,P,_,@
2124 DATA A,B,C,D,%,?,_,9,A,B,C,D,E,P, ,®,4,3,C,D,E,F,_,9,4,3,C,D,E,F,_,?
2125 DﬂT.A A'B,C,D,E,F,_,Q.A,BlC,D.E.F,_,a,ﬂ,B;C,D,EpF _,a,A,B,C'D,E,?, !a
2126 DATA A,B,C,D,3,7,_,9,A,8,¢,D,8,7,_,9,A,8,C,D,E,?,_,?,4,8,C,D,2,7,_,3
2127 DATA A,3,C,0,8,7,,9,4,8,¢,D,8,7,_,9,4,3,C,D,8,F,_,9,4,3,C,D,2,7,_,@

19

3000 DIM nmS(G?)

3001 DIM t$§57

2002 DIM a3(255)

3003 DIM 03(255): DIM e8(255)

3004 DIM dsE1zzg= DIM asE122;: DIM f$§122;
3005 DIM g3(255): DIM a3(255): DIM 18(255
3010 POR x = O TO0 57: READ t3(x): NEXT
3020 FOR x = 0 T0 69: READ nmS(x): NEXT
3021 FOR x = O T 255: READ aS(x): NEXT
3022 FOR x = O T0 255: READ bS(x): NEXT
3023 FOR x = O T0 255: READ cS$(x): NEXT
3030 FOR x = 0 T0 122: READ d$(x): NEXT
3031 FOR x = O T0 122: READ e3(x): NEXT
3032 FOR x = O TO 122: READ £3(x): NEXT
3040 POR x = O T0 255: READ gS3(x): NEXT
3041 FOR x = 0 T0 255: READ h3(x): NEXT
3042 FOR x = O T0 255: READ i8(x): NEXT
4000 G0T0 10

5000 a = INT(ad/4096)

5010 PRINT MIDS(x3, a+1, 1);

5020 b = ad-a*4096

5030 ¢ = INT(b/256)

5040 PRINT MIDS(xS, o+1, 1);

5050 d = b=c*256

5060 e = INT(d/16)

5070 PRINT MIDS(x$, e+1, 1);

5080 f = d-e*16

5090 PRINT MIDS(x$, INT(£)+1, 1);

5092 PRINT " ;

5095 RETURN

5100 jj = PEEK(ad-n1)

5110 IF jj > 33 AND jj < 123 THEN PRINT CER$S(JJ);
5120 ni = ni-1: RETURN

6000 PRINT " ";

6010 IF op > 127 THEN op = op-256

6015 oad = ad

6020 ad = ad+op+i: GOSUB 5000: ad = ocad: RETURN

Printmem is a short program that prints out RAM in a convenient format to
interpret before disassembling. The ASCII equivalents of the numbers are
printed on the left with = signs for non-ASCII numbers. Lines of 16
hexadecimal numbers are then printed in pages of 256. The format is
particularly useful for interpreting tables and variable or string areas. A
sample printout of page 4 is shown following the program.

Viewer is a very short program which displays pages of RAM on the screen as
ASCII and graphics characters. It is a good one to start with.

1 REM VIEWER by P. Hinkle
5 INPUT "page"; p

10 FOR j = O TO 240 STEP 16

15 PRINT " "

20 OR i =0 TO 1

30 x = p*256+i+]

40 t = PEEK(x)

4 IP+ =12 ORt =13 OR t =16 OR t = 128 OR t = 10 THEN ¢t = 61
42IFt=00Rt=TO0Rt=80Rt=9 THEN t = 61

43 TPt =22 0Rt =24 OR £t =28 THEN t = 61

44 TP £t > 159 AND t < 164 THEN t = 61

45 IF t = 148 OR t = 151 THEN + = 61

50 PRINT CHRS(t);

60 WEXT i

70 PRINT

80 NEXT

B
90 GOT0 5

REM PRINTMEM

PR #1
h$ = "0123456789ABCDEF"

INPUT "page"; p
PRINT p

FOR] = O TO 240 STEP 16

PRINT " "3
FOR {1 =0 TO 15
X = p*256+i+]

t = PEEK(x)

IFt <33 0Rt> 126 THEN % = 61

PRINT cans(t),

GOSUB 200
PRINT
NEXT j

PRINT: PRINT: PRINT:

p = p+l: GOTO 6
PRINT TAB(30);
POR i =0 T0 15

220 a = PEEK(p*256+i+])

230 b = a/16
240 ¢ = INT(Db)
250 GOSUB 300

260 ¢ = (b=INT(Db))*16

270 GOSUB 300
280 PRINT " ";
290 NEXT 1
295 RETURN
300 ¢ = o+l

310 48 = MID$(h$ e, 19

315 ww = FRE(9)
320 PRINT dS$;
330 RETURN

==:=:I=:C>==i)a:
=6 =s=D=t="d=s=
Hi=Cathy=FATAL=3
YS TEM=ERROR=====
==Coleco=JmartBA
SIC=V1.0=(c)=198
3,=Lazer=MicroSy
gtmsnrnc-}azgza
=NEX T=without=F0
R=Syntax=RETURN=
without=G0SUB=0u
t=0f=DATA=Illega
1=Quantity=0vert
low=Qut=of=Memor
7=Stack=0verflow
=Jndefined=State

PRINT: PRINT

1B 3A 80 3A 05

3E 1B 3A
20 43 61
54 45 4D
43 6F 6C
43 20 56
20 4C 61
65 6D T3
45 58 54
53 79 6B
74 68 6F
6F 66 20
51 -T5:64
77 OD 4F
53 74 61
&E 64 65

02

74 6

20
65
31

TA
20
20
74
75
44
6B
75
63
66

54 41 10
69 T4 T9
20 6F 66
20 4F 76
6E 65 64

3A 69 3E 1B 3A
27 3E 1B 3A 04
54 41 4C 20 53
1C OC 20 20 2

61 72 74 42 41
29 20 31 39 38
63 T26F 55 79
00 01 3A 01 0D
75 T4 20 46 4F
54 55 52 4E 20

72 66 6C 6F T7
53 74 61 74 65

CHAPTER 5. Memory Map (all numbers hexadecimal).

0000~ Zero page. interrupt routines. All C9 (return)
OOFF except at 66-AB = NMI every 16.7 ms, runs FLASH.

0100 Start of BASIC

0101l- Pointers for version of Basic. See Coleco manual
0104 p.C23 My version has A3 3E C3 4F here.

0l0B- Basic word table. Format: token (1 byte), address in
03a8 address table (2 bytes), number of letters in word (1

03A9- Routine address table. Format: number of addresses
041F (1L byte), address(es) (2 bytes each).

0420- Hi Cathy and copyright statement.
047F

0480~ Error messages. Format: number of letters (1 byte),
ASCII.

05B8- Basic routines. Identify from word and address
3ED8 tables.

3ED9 Himem pointer.

3EDE Lomem pointer.

3EE3 Pointer to start of numeric variables.
3EED Pointer to end of numeric variables.
3EEF Pointer to start of string space.

3EF3 Pointer to end of string space.

3EFE Line number for ONERR GOTO.

3F0l. Speed (FF).

3F02 USR address. CALL is better than USR. Forget it.
3F04 @ address.

3F15 POKE limit

3F22- FP accumulator (see chap. 2).
3F26

3F2B- FP operand.
3F2F

3F32 number of digits in FP result.

3FA4- Basic words, math. Format: number of letters, word,
4045 88 or A8, address.

42A3 Text background color.

4EAA- Tape word table. Format: number of letters, word,

byte), word.

message in

4F4E address table pointer (1 byte), which gives the offset of the address

from the beginning of address table.

21

4F4F- Tape address table. Format: 2 byte address of
4FAS routine. Pointed to by offset in word table.

4FA6~ Tape routines. see tape word and address tables.
SE3F

SE40- Tape error messages. Format: number of letters,
SEES message.

6B00 Approximate location of string variable table.
Format: 03 21 address (2 bytes), name (2 bytes).

6B00 After string table is the numeric variable table.
Format: 03 0l, address (2 bytes), name (2 bytes).

6B00 After numeric table is Basic math word table.

6C00 String space. Format: address in table, number of
letters (bytes), string.

CEOO- Numeric variables (see chap. 2). Numbers are
CF00 preceded by letters of the name after first two.

CF00- Tokenized BASIC program (see chap. 8).
D200~ stack

D400~ Buffer from tape: catalog. Format: name, type, 17
D700 bytes (see chapter 15).

D800~ Buffer from tape: last program loaded.
E000 Start of operating system (see chapter 7).
FBFF OS data tables

FC30- 0SS jump table.
FDSE

FD50- Global RAM
FD75 Keyboard input byte.
FECO Processor control block

FEC4- Device control block

IN/OUT space.

1E Auto dialer

3F Network reset, output odd, even =EOS enable
4F Expansion connector #2

5E Modem data I/0

SF Modem control status

7F Memory bank switch

AO-BF Video display processor.
EO-FF Sound generator. Out only.

FC-FF Game controllers. In only.

Chapter 6. Memory Bank Switches.

The Z80 can only address 64K {216} memory locations but can change blocks of
memory by a technique known as bank switching. The Adam contains about 40K of
ROM (read only memory) with SmartWriter and two operating systems, EOS and 0S7
that can be switched into the upper or lower 32K of memory space. Expansion
RAM (if you have it) and game cartridge ROM can also be switched in and out of
the active memory space. Memory is normally all RAM in BASIC, the OS having
been copied from ROM to RAM.

The bank switch is an OUT 7F,x command, where the lower nibble of x
selects the following options:

Lower 32K D1 DO Upper 32K D3 D2
SmartWriter, EOS 0 O 32K RAM 0 0
32K RaM (v S 1 expansion ROM ? 0 1
expansion RAM 1 -0 expansion RAM 1 0
0S7+24K RAM b 3 | cartridge ROM L 3

For example, to select normal RAM for both the upper and lower blocks the
number in binary is 0001, or 1. To select 32K of RAM on the bottom and
cartridge ROM on the top, the number is 1101, or 13 (dec). A D1 and DO of 0
will access either SmartWriter or the EOS ROM, depending upon another in/out
command. Performing OUT 3F,2 before the OUT 7F,0 will access the EOS ROM. OUT
3F,0 causes QUT 7F,0 to access the SmartWriter ROM.

The following program moves code from ROM to RAM and then displays it on
the screen as characters to help find the interesting parts. It is mainly an
illustration of how to access the ROM's from BASIC. You must remember that the
part of the program that accesses a ROM must be in the other 32K of memory
space or else it will disappear from the Z80 when the ROM is switched in.

REM ROMVIEWER
49999

gigiﬁ :62.0,211,127,17,130.195,33,0,0,1.0,1,237,176.62.1,211,127,201
REM poke 'get page from rom' routine into mem.
FOR x = 50000 TO 50019: READ d: POKE x, d: NEXT
INPUT "page"; p: GOSUB 100
10 FOR j = 0 TO 240 STEP 16

15 PRINT " s

20 FOR i =0 TO 1

30 x = 50100+i+j: t = PEEKéxJk -

check for return, backspace, etc.

:2 ?gut = 12 0Rt =13 0R t = lg OR t = 128 OR t = 10 THEN ¢t = 61
42 IF t = OOR t = 7O0R t =8 OR t =9 THEN t = 61
43 IF t = 22 OR t = 24 OR t = 28 THEN ¢t = 6l

43 IF t > 159 AND t < 164 THEN t = 61

45 IF t = 148 OR t = 151 THEN t = 61

50 PRINT CHR$(t):

60 NEXT i: REM get next character

70 PRINT

80 NEXT j: REM get next 16 characters

90 GOTO 7: REM get next page

99 REM get page p from rom
100 POKE 50009, p
110 cALL 50000
120 RETURN

S s W

23

Chapter 7. The Operating Systen.

The operating system, or E0S (E for elementary), is a collection of
routines loaded from ROM to RAM from EO0O0 to FCOO. Much of EOS comes from 0S7,
the operating system for the ColecoVision game board, that is also available on
the Adam. EOS also uses RAM from FCOO to FFFF for various tables as follows:

FCO0-FC2F EOS data tables

FC30-FD5C EOS jump table

FD5D=FEBF EOS RAM

FECO-FEC3 Processor control block

FEC4~-FFFF Device control block

The jump table of routine addresses at FC30 was made so that the entry
points of routines would always be the same, ie. the table, even if the routine
was moved. The most useful routines for running the printer, tape, etc., are
described in the relevant chapters. 1If you wish more information you can
disassemble the operating system (it only takes 57 pages), and use the
following list of titles and jump table addresses to identify and study the
routines. In many cases there seem to be repeated routines, but there are
minor differences, usually related to games. For example, there is a 'read one
block' for the tape, a 'start read one block' and a 'end read one block'. The
useful routine is just plain 'read one block', and the others are for use when
you want to do something else while the block is being read. You can 'start
X',do something else, and then 'end X' later. However, we do not recommend it.

EOS JUMP TABLE
PC30 EOS start initialization
FC33 console display
FC36 console initialization
FC39 display character on screen
FC3C delay after hard reset
FC3F end print buffer. (check if printer done)
FC42 end print character (same)
FC45 end read one block
FC48 end read character device (check DCB)
FC4B end read keyboard
FC4E end write one block
FC51 end write to character device
FC54 £find DCB
FC57 get DCB address
FCSA get PCB address
FCS5D hard initialization (cold start)
FC60 hard reset AdamiNet
FC63 print buffer
FC66 print character
FC69 read one block
FC6C read keyboard
FC6F read keyboard, return code
FC72 read printer, return code
FC75 read return code

FC78
FC7B
FC7E
FC31
FC84
FC87
FC8A
FC8D
FC90
FCo3
FC96
FC99
FC9C
FCOF
FCA2
FCAS
FCas
FCAB
FCAE
FCB1l
FCB4
FCB7
FCBA
FCBD
FCCO
FCC3
FCC6
FCC9
FCCC
FCCF
FCD2
FCD5
FCD8
FCDB
FCDE
FCEl
FCE4
FCE7
FCEA
FCED
FCFO
FCF3
FCF6
FCF9
FCFC
FCFF
FDO2
FDOS
FDO8

read tape return code
relocate PCB

request status

request keyboard status
request printer status
request tape status
scan AdamNet

soft initialization
soft reset device

soft reset keyboard
soft reset printer
soft reset tape

start print buffer
start print character
start read one block

start read character device

start read keyboard
start write one block

start write character device

FBFF
FCl1l7
Fc27
Fcas
FC29
FC2A
FC2B
FC2D
FC2E
FC2F
FECO

synchronize Z80 and master 6801 clocks

write one block
write to character device
initialize file manager
initialize tape directory
open file

close file

reset file

make file

read directory for file
set file in directory

read file

write file

gset date

get date

rename file

delete file

read device dependent status

POINTERS
interrupt vector table
memory configuration table
memory switch port
AdamNet reset port
VDP control port
VDP data port
controllers
strobe set port
strobe reset port
sound port
PCB

goto word processor (called by block 0 on tapes)

read EOS

trim file
check FCB
read block
write block
mode check
scan for file in directory
file query
position file
EOS 1

EOS 2

25

FDOB
FDOE
FD11
FD14
FD17
FD1A
FD1D
FD20
FD23
FD26
FD29
FD2C
FD2F

FD32
FD35
FD38
FD3B
FD3E
FD41
FD44
FD47
FD4A
FD4D
FDS0
FD53
FD56
FD59
FDSC

EOS 3

cv A

get in/out ports
bank switch memory
put ASCII to VDP
write VRAM

read VRAM

write VDP register
read VDP register
fill VRAM (one character)
init VRAM table
put VRAM

get VRAM

calculate offset

point to pattern position
load ASCII to VDP

write sprite attribute table
read game controllers
update spinner

decrement low nibble
decrement high nibble
high nibble to low nibble
add A and (HL) 16 bits
sound init

sound off

start song

sound

effect over

EOS RAM TABLE

FD60
FDé6l
FD63

FD64
FD66

FD68
FD6EA

FD6C
FD6E
FD6F
FD70
FD72
FD73
FD75
FD76
FD86
FD87
FD8s8

revision #

VDP mode

VDP status byte

sprite attribute table
sprite generator table
pattern name table
pattern generator table
color table

cursor bank

current device
current PCB

device ID

file name address
keyboard buffer

print buffer

sectors to init

sector #

DCB image

FDAC
FDBA
FDD4
FDDS
FDD6
FDD7
FDD8
FDD9
FDDB
FDDC
FDEO
FDE1
FDE2
FDE3
FEOl
FEO2
FEO4
FEO06

FEO8
FEOA
FEOC
FELO

FE12
FEl6

FE1A
FES8
FES8
PES9
FESA
FE6E
FE6E
FE70

FE72
FE74
FE76
FE78

FE79
FE7A

FE7B
FE7C

FE7D
FETE

FE9F

FEAL
FEA3
FEAS
0147

query buffer

FCB buffer

file count

mod file count
retry count

file #

file name cmps
directory block #
found entry
volume block size
year

month

day

file mnger dir ent
fmum

bytes reg

bytes to go

user buffer
buffer start
buffer end

blocks reg

user name

start block

new hole start
new hole size

EOS stack
spin switch 0
spin switch 1

and down,

personal debounce

and down, temp stack
pointer to list of sounds
ptr to sound 1 data block
ptr snd 2 db

ptr snd 3 db

ptr noise db

save ctrl sound

old chr

X min

X max

y min

y max

line buffer

of lines

$ of columns

upper left

ptr to name table

cursor

clear RAH size

27

CHAPTER 8 BASIC

BASIC is loaded from tape to RAM as outlined in the memory mzp. To
identify routines where different commands are carried out use the tables of
words which point to routines in RAM. These routines can then be called
directly from machine language programs, although in most cases it is easier to
do everything in machine language yourself because the routines from BASIC
require extensive setup, which we have not figured out yet.

The first table is on pages 1-3, beginning with GOSUB, GOTO, etc. Print
out these pages of RAM with printmem and you will see the following pattern:
number of word (token), address (2 bytes low, high), number of letters in word,
word. For example, 02 AD 03 05 47 4F 53 55 42, means 2=token, 03AD=address, 5
letters, and GOSUB in ASCII. Token {1 has no letters and the same address as
LET, wnich presumably means "ignore it". The address of GOSUB, 03AD, is to a
table in page 3 after the word table which gives the number of routines (in
this case 1), and the address (in this case 3D8C). In this way all the routine
addresses can be obtained, except a group including STOP, NEW, etc. that have
03D0 which points to a 0, ie. no address. At the end of the word table there
are some words and symbols which are used in conjunction with other words.
These are given tokens only, with no addresses.

The next table of BASIC words is on page 3F (63), which also holds various
pointers, the floating point accmulator (3F22-6), etc. This table of math
functions is organized as: number of letters, word, 88 or A8, address.

A table of tape key words is on pages 4E and 4F. These words (OPEN,
APPEND, READ, etc.) do not have tokens, and the address of each command is
listed in order in the address table following the name table. Thus in our
copy of BASIC, OPEN is at 4EO3, APPEND at 4EOF, etc. If you experiment with
these routines do not use a tape you care about.

BASIC programs are stored in RAM on page CF (207) by line number (2 bytes
low, high), followed by an address in page DO, D1 or higher. At the address is
the tokenized line, based on the tokens in the first BASIC table and others.
Print out pages 207-209 with printmem and compare it with a listing of
printmem. Add new lines which do not do anything and print pages 207-209 again
to see how the new line is stored.

Numeric variables are stored in pages CF, CE, etc. just below the
tokenized program, The first two letters of each variable are in a table in
page 6B (107) which lists the address of the variable. If variables have more
that two letters, the remaining letters are in page CF (207) or vacinity.
String variables are also listed in the variable table on page 63, and are
stored on page 6C and following. All these tables are in different locations if
HIMEM or LOMEM are used, but they still point to each other in the same way.

Input from tape is stored directly in a buffer in pages D4 (212) to D8
(216)., This area contains the CATALOG of the last tape and the last program

loaded, which appears exactly as it was typed in. The CATALOG lists the name
of a file, the type, and 17 bytes described in the tape chapter.

One simple way to modify BASIC that can be fun to surprise people who know
BASIC, is to change the key words in tables by poking new ASCII into RAM., It
is easiest if the number of letters is not changed. After such changes BASIC
will only respond to the new words.

Two pokes that are useful are 17115 followed by "TEXT" which changes the
screen (low nibble) and text (high nibble) colors, and 16149, 16150 which holds
the limit on poke addresses.

Some memory locations in BASIC that control the format of the screen in
text mode are as follows:
$4261 16993 line # from which scrolling starts.
$4262 16994 column # at which scrolling stops.
$4263 16995 top margin for scrolling.
$4264 16996 column # not scrolled.
$4265 16997 left margin.
$4269 17001 cursor line #.
$426A 17002 cursor column #.
$432E 17198 $ of lines.
$432F 17199 # of columns.
$4331 17201 top margin.
$4332 17202 left margin.

CHAPTER 9 The Video Display Processor

The video signal to the TV is produced in the ADAM by the Texas
Instruments video display processor (VDP), TMS9918A. It is very different from
the Apple graphics in BASIC, and has modes, patterns, backgrounds, and sprites.
We learned about this chip from an article in August, 1982 Byte by Steve
Ciarcia and from a book sent free from Texas Instruments, Semiconductor Group,
P.0.Box 1143, Houston TX, 7700l. This book is hard to relate tothe ADAM, and
has all examples in 9900 assembly language. The VDP is organized as
mul tiple screens (or planes) in series, as shown below. The sprites are in the
forground and can be used for moving or stationary objects. Sprites can be
moved by simply changing their x and y coordinates in a table. They move
cleanly without changing the colors of nearby objects, as occurs with Coleco's
implementation of Apple graphics.

EXTEANAL VOP

BACKOROP PLANE

SMTE | L

SPAITE O i

A

Behind the 32 sprites is a pattern plane which is a matrix of blocks, each 8x8
pixels that can be defined by the user. These pattern blocks are used to form
the text in BASIC, but could also be used for landscapes etc. Behind the
pattern plane is a backdrop plane which specifies the color of all pixels not
set by the previous planes. Throughout, transparency is a possible "color".
Finally, behind the background plane is the possibility, not implemented on the
ADAM, of having the output of the VDP viewed on top of the output of another
VDP chip.

The 9918A is a very complex chip which is connected to 16K of RAM,"VRAM",
for its own use. It has four modes of operation which, together with the
arrangement of tables in VRAM and a few other things, are specified by eight
control registers which can be written to but not read. The chip is mapped in
the 280 in/out space at 160, 161 to 190,191 (decimal) even-odd pairs. We will

29

use 190 and 191. The control registers, a read-only register, and VRAM are
accessed by the 2Z80 according to the following table.

Operation Bits CSW CSR Mode in/out (dec)
write to register

byte l:data D7==———=———e==D0 0 1 1 191
byte 2:reg.sel. 1 0 0 0 OR2R1RO 0 1 1 191
Write to VRAM

byte l:address A7============A0 0 1 1 191
byte 2:address 0 1 Al3-==-==A8 0 1 1 191
byte 3:data D7============D0 0 1 0 190
Read from register 8

byte l:data D7=====—=m=====D0 p | 0 > [191
Read from VRAM

byte l:address A7============A0 0 1 1 191
byte 2:address 0 0 Al3----==A8 o] 1 1 191
byte 3:data D7=====—======D0 1 0 o 190

Bytes 1 and 2 of the write to VRAM procedure are needed for only the first
byte transfered. Additional data bytes are automatically put into the next
address. Some of our attempts to read and write to VRAM did not work, probably
because of some timing problem. The following program prints out VRAM for you
to analyze. (See Page37)

CONTROL REGISTERS

Register 0
contains two option control bits.

bit 1, M3=1 specifies graphics mode 2

bit 0, EV=]1 enables external input. Keep EV=0.
Register 1

contains seven option control bits.
bit 7, 4/16K RAM. Keep at 1 (16K).
bit 6, 0 blanks display. Keep at 1.
bit 5, interrupt enable. l= enabled.
bit 4, Ml=1 specifies text mode.
bit 3, M2=1 specifies multicolor mode.
bit 2 always =0.
bit 1, size. 0= 8x8 sprites, 1= 16x16 sprites.
bit 0, mag. O= sprites xl1, l= sprites x2.

Register 2

The upper 4 bits are always 0. The number in the lower 4 bits (0 to 15) times
$400 (1024) is the base address in VRAM of the pattern name table. Each byte
in the name table corresponds to a region on the screen, and the number in the
table specifies the pattern to be displayed there.

Register 3

This number (Q to 255) times $40 (64) is the base address in VRAM of the
color table.
Register 4

This number (0 to 7) times $800 (2048) is the base address in VRAM of the
pattern generator table.
Register 5

This number (0 to 127) times $80 (128) is the base address in VRAM of the
sprite attribute table.
Register 6

This number (0 to 7) times $800 (2048) is the base address in VRAM of the
sprite pattern generator table, where shapes of sprites are defined.
Register 7

The upper 4 bits (0 to 15)x16 specify the color of text in the text mode
(not used by Coleco). The lower 4 bits (0 to 15) specify the background color
in text mode and backdrop color in other modes.
Register 8

This is the status, read-only register. It contains three flags and a fifth
sprite number and can be read during programs to check certain conditions.
Reading the register clears all flags to 0.

bit 7, flag F. Interrupt flag, is set to 1 at the end of the last raster
scan on the TV.

bit 6, fifth sprite flag (5S). Only four sprites are allowed on any given
horizontal scan line. When a fifth sprite crosses a horizontal line this flag
is set to 1 and the number of the sprite is placed in the lower 5 bits of the
register.

bit 5, flag C. This coincidence or collision flag is set to 1 when two
sprites collide. Collisions are checked only 60 times per second adn so may be
missed.

COLOR CODES

The colors that are specified for sprites, backgrounds,etc. have the
following codes.

0 transparent 8 medium red

1 black 9 light red

2 medium green 10 dark yellow
3 light green 11 light yellow
4 dark blue 12 dark green

5 light blue 13 magenta

6 dark red 14 gray

7 cyan 15 white

To change the color of text and background include "POKE 17115,x" followed

by "TEXT" in your programs. The top nibble of x is the text color, and the low
nibble is the background color.

MODES

Graphics mode 1. (M1,M2,M3=0)

This is the simplest graphics mode and, strangely, is used by BASIC to
display text. The pattern plane is divided into 32 columns by 24 rows of
blocks (768) each containing 8x8 pixels. Three tables in VRAM are used to
create the pattern plane, as shown below.

31

Graphics mode 1.

PATTERN ?CSITION Q

BASE ADDRESS [+] PATTERN POSITION 1

PATTEAN

2 POSITION 21
Q al l 1 I
1
2 BASE PATTEAN
ADORESS I’OSI‘HON
g
N - g SM PATTERN 1’ 24 POSITIONS

aM - 7 (88YTES)

788 pu—
787 :
PATTERN ATTERN
2048 PATTERN PLANE
NAME TABLE 2047 POSITION
7
PATTERN “

GENERATOR TABLE

Q
1

M) AT 1O Lo R

in

PATTERN
CULOR TABLE

The pattern name table is a 768 byte block of VRAM beginning on a 1K boundary
pointed to by control register 2. Each byte corresponds to a region of the
screen (ordered from left to right and top to bottom) and specifies the number
of the pattern in the pattern generator table and the n/8th entry in the
pattern color table to be displayed at that point. More that one pattern name
table can be made, allowing rapid switching between pattern planes by simply
changing the number in control register 2. The color table has only 32
numbers, and is pointed to by control register 3 times $40. Each number
specifies the color of 1's in the pattern by the top 4 bits and of 0's by the
bottom 4 bits. One number in the color table applies to 8 patterns in the
pattern generator table, so patterns of the same colors should be grouped
together.

The pattern generator table, pointed to by control register 4, consists of 8
bytes which form an 8x8 matrix of 1's and 0's as illustrated below.

BYTE BINARY HEX
0 ac
1 7E
2 FB
3 FF
4 F8
5 FC
8 7E
7 3c

33

The same type of 8x8 matrix is used for sprites. As many as 256 patterns can
be defined, taking 2048 bytes, but any smaller number can also be defined. An
all-0 pattern should be included to point to for blank areas of the screen.
Sprites can be used in all graphics modes, and the only limitation in mode 1 is
that each 8x8 block in the pattern plane can have only two colors.

Graphics mode 2

Graphics mode 2 enhances the resolution over mode 1 by increasing the
length of the pattern generator table from 2048 bytes to 6114 bytes (x3), and
increasing the color table from 32 bytes to 6144 bytes. This allows every
pixel to be set independantly and the color to be specified every 4 pixels
(equal numbers of pattern and color bytes means 4 bits of color, or 1 color, for
4 bits of pattern, or 4 pixels). The pattern groups of 8 bytes are addressed
by the name table as shown below.

Graphics mode 2

PATTERM et
jsevren | PATTIAM FOBITION o
| PATTIRN
a7 . 1- SATTERN POSITION 1 SOLITION
E = { n
[—
PATTUAN snct }..r_.l —
L i aYTLR PATTERAN POMTION
7Y W
-l =
O — AFTEN
L] (=] — «amg s oUTION
=8
PATTERN sncy — "ATTIAN romTiON 38
[l —— B EYTIR PATTEIRN FORITION
= o pucces
= na PATTIRN
- L [sonuTION
PATTERN GEINGRATOR s
. |_Je=rsarTiam sosimion 12
o - e "ATTERN POTITION
R el -~
m ¢ - PATTIRN
e ———— T
h:_ PATTERN =t -~ ::‘ o
o ‘1evTin
PATTERM PLANE
200 | —
- e
|
PATTTRN naset PATTEAN may i
TASLS L
o —
woes
PATTERN mcy
'8 evTIn
na
PATTEAM COLOR

TASLE

This mode is used for hires in BASIC but is awkward for such use because it was
designed for backgrounds only. Sprites can be used in mode 2, and it would be
ideal to combine sprite routines with BASIC hires. To do this it will be
necessary to deduce VRAM allocation in BASIC hires.

Multicolor Mode
This mode is like lores graphics in BASIC, but gives a 64x48 block (of 4x4
pixels) display with any color allowed for any block. The blocks are specified
as shown below.

Multicolor Mode

A B
ROW O
e]lo
] [} COLUMN 0
ROW 0 4
Al B
Row
c|D °
NAME [
\ | ; ™ ROwW 1
E | F
ROW 1
sBYTES g | H L1 nowz
(K 1L
MIN
e] "™
» ROW 23 2047] 4
PATTERN NAME PATTERN GENERATOR X :LL :
TABLE TABLE VIDEO DISPLAY
M| N
o T "ow3
BYTES POINTED TO
BY NAMES

An entry in the pattern name table specifies 4 blocks, such as ABCD in row 0.
If a byte in the name table which is in row 1 addresses the same pattern
generator block, the colors will be EFGH, given by the third and forth bytes in
the pattern. The first two bytes in a pattern apply to rows 0,4,8,12,16,20.
The second two bytes apply to rows 1,5,9,13,17,21, etc.

Text Mode
In this mode the screen is divided into a grid of 40x24 patterns
(presumably letters and numbers), and the colors are specified by control
register 7. Each pattern is 6 pixels across by 8 down, and the lowest two bits
of each byte in the pattern generator table are ignored.The mapping in text
mode is shown below. Sprites are not available in text mode.

Text Mode
° TEXT POSITION 0
! | ==40POSITIONS —= TEXTPCSITION 39
2
0
1 L] [
2 t
TEXT :
POSITION
N W IS o 24 POSITIONS
™ [N |
i TEXT :
958 PATTEAN
i e
PATTERN 2048 L]
NAME TABLE 2047 TEXT POSITION 959
PATTERN
SENERATOR
TABLE
{ cOLoR ! | coLomro
J

VOP REGISTER 7

SPRITES
Sprites are controlled by 4 bytes in the sprite attribute table, which

specify the position ofthe sprite on an approximately 256x92 grid, point to the
sprite generator table block, and specify the color of the sprite. The

addressing mechanism is shown below.

SCREEN

/4

SPRITE

SPRITE
ATTRISUTE
TABLE

SPMITE
GENERATOR
TABLE

In the sprite attribute table a sprite is defined by 4 bytes. The first byte is
the vertical position, and the second byte is the horizontal position. The
third byte is the sprite name which points to an 8 bit block in the sprite
generator table. The forth byte has the sprite color in the lower 4 bits, 0's
in bits 4,5, and 6, and something called the early clock bit in the top bit.
When this bit is 1 the sprite is moved 32 pixels to the left, and it can

probably be safely ignored. The sprite attribute table is ended by the number
208 decimal, so that the number of sprites showing can easily be changed from a

maximum of 32 to less by inserting 208 in the vertical position byte of one
sprite, blockiny display of it and all further sprites in the attribute table.

The size and resolution ofsprites is controlled by the size and mag bits
in control register 1, as follows.

SIZE MAG Area Resolution Bytes/pattern

0 0 8x8 single pixel 8
1 0 16x16 single pixel 32
0 1 lexle 2x2 pixels 8
1 1 32x32 2x2 pixels 32

SPRITE EDITOR

The following program allows you to create a sprite file to be stored on
tape as a binary file. TYou can make up to 32 sprites in the 8*3 or 16*16
format, It pokes the number of gprites into 51000, and the sprite length (8 or
32) into 51001. From 51002 to 51000 + # of sprites times sprite length, the
sprites are gtored. When you are done making the sprites the program asks
whether you want to store them, and if so under what name.

310
320
499
500
ad
510
520
530
540
550

REM sprite-editor by B. Hinkle

HIMEM :50999: ra = 51002

TEXT: PRINT: PRINT: INPUT "How many sprites would you like to have (1-32)?
IFPn<10RRNn> 32 THEN 5

PRINT: PRINT: PRINT: PRINT "Would you like to have:": PRINT

PRINT " 1. 8x8 sprites": PRINT " 2. 16x16 sprites": PRINT: INPUT "(1,2)?

IF s <1 0R s> 2 THEN TEXT: GOTO 10
POKE 51000, n: POKE 51001, s 2*3: REM # of sprites and length of sprite

rb = s*8+11: bb = g*8+1: FORd =1 T0 n
GR: COLOR = 10: x =11: 7 =1
JLIN O, bb AT 10: VLIN O, bb AT rb: ILIN 10, rb AT O: HLIN 10, rb AT od
REM print commands on sereen
PRINT " arrow keys to move cursor”
PRINT "'a'-plot", "'d'-erase”
PRINT "'return' when done with sprite"
PRINT "sprite #"; d;
REM main loop
COLOR = 6: PLOT x, 7
GET as: p = ASC(as)
IP e =1 THEN COLOR = 8: PLOT x, y: GOTO 140
COLOR =0: PLOT x, ¥
REM check for special commands
IF p =97 THEN COLOR = 8: PLOT x, ¥
IP p= 100 THEN COLOR = 0: PLOT x, y: e =0
IF p = 13 THEN 200
REM check for arrow keys
= 163 AND x-1 > 10 THEN x = x-1: e = 0
= 161 AND x+1 < rb THEN x = x+1: e = 0
= 160 AND y-1 > O THEN y=y-1: e =0
= 162 AND y+1 < bb THEN y = y+i: e =0
CRN(x, y) =8 THEN e = {
GOTO 100: REM g0 back to main loop
REM poke sprite into memory
IF s = 2 THEN 280
REM 8*8 sprite poking
aag = 8: ab =1: ac = 18: ad = 11: GOSUB 230
NEXT d: GOTO 500
REM poke an 8*8 block into 51000+
FOR y = ab T0 aa: 1 =0
FOR x = ac T0 ad STEP -1 R
IP SCRN(x, y) = 8 THEN i = i+2"(ac-x)
NEXT x: POKE ra, 1; ra = ra+l; NEXT y
RETURN
REM 16*16 sprite poking
aa = 8: ab =1: ac = 18: ad = 11: GOSUB 230
aa = 16: ab = 9: ac = 18: ad = 11: GOSUB 230
aa = 8: ab = 1: ac = 26: ad = 19: GOSUB 230
aa = 16: ab = 9: ac = 26: ad = 19: GOSUB 230

D
P
I p
o)
s

NEXT d
REM save sprites on tape
TEXT: PRINT: PRINT: INPUT "Would you like to save the sprites (y/n)?";

IF ad <> "y" AND a$ <> "n" THEN 500

I® a3 = "n" THEN PRINT "End of program": ZND

INPUT "Type in the name for the file:"; a$: ra = ra-51000
PRINT CHR3(4); "bsave "; a3; ",a51000,1"; ra

PRINT "done"

The second program is an example of how to use a sprite file made by the
sprite editor. It asks the name of the file you want and loads it into RAM at

51000.

It then sets up the sprite generator and attribute tables in VRAM,

peeks the generator pointer at 64870 and the attribute pointer at 64868 to set
up VRAM addresses %o be changed, and loads the VRAM generator table with the
sprite table in RAM at 51002, It then moves the sprites by sending X and Y to

VRAM.
table,

Analogous programs can be written to do various things with a sprite

3 REM demo of sprite-editor program by B. Einkle
5 EIMEM :49999: DIM y(32), x(32), yd(32), xd(32): HGR
10 DATA 62,0,211,191,201,62,0,211,190,201
20 FOR x = 50000 TO 50009: READ d: POKE x, d: NEXT
30 INPUT "name of sprite file to be used?"; al
40 PRINT CHRS(4); "bload "; a3
45 a = PEEK(64870): GOSUB 1000: a = PEEK(64871)+64: GOSUB 1000

50 FOR x = 0 T0 PEEK(51000)*PZEX(51001): b = PEEK(51002+x): GOSUB 1100: NEXT

REM -load gen. table
60 x = RND(-PEEK(17011)): POR i = 1 20 PEEK(51000)
65 REM set up random directions for each sprite

i
70 yd(i) = RND(1)*10: xd(i) = RND(1)*10: x(i) = 150: y(i) = 100+i

80 NEXT 1

85 a = PEEK(64868): GOSUB 1000: a = PEEK(E4869)+64: GOSUB 1000: REM

ddr. for att.table

1
1
1
1
1

01

10
20
30
32
35

50
60
65
67
70
80

89 REM move sprites around

90 FOR i = 1 TO PEEK(51000)
100 IF yEi} < 30 OR y(i) > 150 THEN yd(i) = -yd(i)
110 IF (i) < 100 OR x(i) > 240 THEN =xd(i) = =-xd(i)
120 x(i) = x(i)+xd(1i): y(i) = y(i)+yd(1i)
140 b = y(i): GOSUB 1100: b = x(i): GOSUB 1100: b = i-1: GOSUB 1100
150 b = 15: GOSUB 1100: NEXT i: b = 208: GOSUB 1100: GOTO 85
999 REM 'out' to 191

000 POKE 50001, a

010 CALL 50000: RETURN
099 REM 'out' to 190
100 POKE 50006, b

110 CALL 50005: RETURN

3 REM SCRN for hgr/hgr2 by B. Hinkle

get up a

10 DATA 17,0,0,213,6,3,203,58,203,59,16,250,205,50,253,253,33,1,0,33,240,0
+62,3

20 DATA 205,47,253,33,240,0,209,122,230,7,133,111,123,230,7

30 DATA 71,62,8,144,71,175,55,143,16,253,166,33,240,0,40,3,54,1,201,54,0,2

40 FOR x = 1 TO 61: READ d: POKE x+172, d: NEXT
50 HGR: HCOLOR = 12: HPLOT 10, 10 TO 200, 10
55 HPLOT 100, 100

57 HPLOT 0, 0 TO 255, 191

60 INPUT "x:"; x: POKE 174, x

70 INPUT "y:"; y: POKE 175, y

80 CALL 173: p = PEEK(240)

90 PRINT p: GOTO 60

REM PRINTVRAM by Ben Hinkle
PR #1
x$ = "0123456789ABCDEF"

DATA 62,0,211,191,62,00,211,191,0,0,0,0,219,190,50,32,203,201

FOR x = 51400 TO 51417

READ d: POKE x, d: NEXT x

INPUT "page?"; p: POKE 51405, p: PRINT p
FOR e = 0 TO 15

FOR s = 0 TO 15

POKE 51401, e*l6+s

CALL 51400

g = PEEK(52000)

PRINT MIDS(x$, INT(g/l6)+l, 1); MIDS(x$, (g/16=INT(g/16))*16+1, 1l):

NEXT s
PRINT: NEXT e

7

a7

The previous two short programs, SCRN and printvram,are further examples
of using direct access to the video RAM. The SCRN routine to line 50 could be
included in your own program and called if you want to know whether a bit is
set on the hires screen.

The following program is a simple sprite demo that illustrates making a

sprite and moving it on the HGR2 screen.

5

6
10
19
20
30
34
35
36
37
38
39
40
50
55
60
70
80
90
100
110
120

REM SPRITE DEMO

HGR2

HIMEM :51399

REM load machine language code

DATA 62,0,211,191,201,62,00,211,190,201
FOR x = 51400 TO 51409: READ p: POKE x, p: NEXT
REM

REM background

FOR s = 1 TO 25

HCOLOR = 15*RND(9)

HPLOT 100+3*s, 0 TO 1l0*s, 191

NEXT

REM

REM load sprite generator

a = 0: GOSUB 1000: a = 120: GOSUB 1000

DATA 60,126,195,219,219,195,126,60
FOR x = 1 TO 8

READ d: GOSUB 1100

NEXT

REM load sprite attribute

a = 128; GOSUB 1000: a = 127: GOSUB 1000

d = 70: GOSUB 1100: GOSUB 1100: 4 = 0: GOSUB 1100: 4 = 7: GOSUB 1100: d =

208: GOsUB 1100

199
200
230
240
250
260
299
300
310
320
330
340
350
360
370
380
999
1000
1010
1020
1100
1110
1120

REM

REM load control registers
127: GOSUB 1000

133: GOSUB 10C0

7: GOSUB 1000

134: GOSUB 1000

oo
U B B |

8

MOVE IT
t+.05
60*SIN(t)+70
60*COS(t)+70
128: GOSUB 1000
127: GOSUB 1000
= INT(x): GOSUB 1100
d = INT(y): GOSUB 1100
GOTO 310
REM
POKE 51401, a
CALL 51400
RETURN
POKE 51406, d
CALL 51405
RETURN

[P R

39
BASIC GRAPHICS
The graphics modes in BASIC use the VDP in unusual ways to try to copy
Apple II graphics. This section describes the BASIC graphics modes and how to

work with or around them.
BASIC TEXT mode.
VRAM is set up as follows:

Pages Table
0-7 pattern gen. (characters)
8-10 name 1
24-26 name 2
32 color

In BASIC text mode the VDP is in graphics mode I and the ASCII code is in
the name table which points to the character set in the pattern gen table.
Actually there are two name tables which alternate with the frequency of the
blinking cursor. To make a character appear steadily the ASCII must be in both
name tables at the same location.

The easiest changes to make are text and background colors, as described
on page 31. The most interesting change to make is to create your own
character set. The characters are made on an 8x8 grid, but use only 5x7 to
make spaces between the letters. The following program is a font editor to
make new character sets. It loads the Adam set from ROM to Z80 RAM starting at
28020 to use as a base from which to work. It then asks which character you
would like to change and lets you plot it in an 8x8 grid. When you are done it
puts the new character in RAM and then in VRAM using a modified OS routine.

You can then save the new fonts and a short machine language program on tape as
a binary file. To use the file in the immediate mode or from a program type
“bload (name)", “call 28000” and "text", and the new fonts will be installed.

2 RE! character editer by Ben Hinkle

3 LOMEM :29038: HIMEM :49996: GOSUB 1010

7T DATA 62,0,205,20,253,33,4,3,1,0,4,17

8 DATA 100,195,237,176,62,1,205,20,253,201

10 DATA 175,50,112,225,50,113,225,50,114

13 DATA 225,50,127,225,50,128,225,50,129,225

15 DATA 50,117,225,62,17,50,118,225,62

17 DA™ 116,50,119,225,62,109,50,120,225,201
18 REM routine to modify 0S

20 FOR x = 28000 T0 28037: READ d: POKE x, d

30 NEXT: CALL 28000

40 REM 2ain loop

50 GR: COLOR =10: x =11: 5y =1

53 PRINT "'q'-quit 'd'-display 's'-save"

54 PRINT "'r'-reset set", "'l'-load"

55 INPUT "Edit character # (32-126)2"; d$

56 d = TAL(dS): I? d = 0 THEN 600: REM special command
57T IPd < 32 0R d > 126 THEN 50

58 ra = 28020+d*8: REM addr. in table

60 VLIN O, 9 AT 10: VLIN O, 9 AT 19

61 HLIN 10, 19 AT O: BELIN 10, 19 AT 9

70 PRINT "cur.keys-move", "'s'-gave set"

80 PRINT "'a'-plot", "'e'-erase”

90 PRINT "'return'-done", "'gq'-quit"

95 PRINT "character #"; d; " looks like:"; CHRS$(4):
99 REM edit character
100 COLOR = 6: PLOT x, y: GET a8: p = ASC(a$)
120 IF e = 1 THEN COLOR = 8: PLOT x, y: GOTO 140
130 COLOR = 0: PLOT x, ¥

135

167
170
180
190
220
230
240
250
260
270
499
500
540
550

600
610

640

1000
1010
1020
1030
1040
1050

REM check for plot, done, etc.
IF p = 97 THEN COLOR = 8: PLOT x, ¥

IF p = 113 THEN 50

IF p = 115 THEN 500

IF p = 101 THEN COLOR = 0O: PLOT x, y: e =0
IF p = 13 THEN 230

REM check for arrow keys

IF p = 163 AND x-1 > 10 THEN x = x-1: e = 0
IF p =161 AND x+1 < 19 THEN x = x+1: e = 0
IF p=160 AND -1 > O THEN y =y-1: e =0
IF p =162 AND y#1 < 9 THEN y = y+i: e =0

IF SCRN(x, y) =8 THEN e =1

GOTO 100

REM poke new character into table
FORy=1T08: i=20

FOR x =18 T0 11 STEP -1 "

IF SCRN(x, y) = 8 THEN {1 = i+2"(18-x)

NEXT x: POXE ra, i: ra = ra+l: NEXT 7

GOTO 50

REM save character set

TEXT: INPUT "file name ?"; a$

PRINT CHRS(4); "bsave "; a$; ",228000,11036"
PRINT a$; " has been saved": END

REM load character set

HOME: INPUT "file name?"; a3

PRINT CHR$(4); "bload "; a$

G0TO0 50

REM gpecial commands

IF 43 = "s" THEN 500

IF 4% = "q" THEN TEXT: END

IP 48 = "d" THEN 640

IF d8 """ THEN RESTORE: GOSUB 1010: GOTO 20
I® d$ = "1" THEN 57Q

GOT0 50

REM display set

TEXT: PRINT " "; : FOR x =0 TO 9: PRINT x;
NEXT: PRINT

FOR x =3 T0 9: ETAB 2: PRINT x: NEZXT

FOR x = 10 T 12: PRINT x: NEXT

VTAB 2: HTAB 5

VTAB 2: HTAB 5: FOR x = 32 T0 126

IF INT(x/10) = x/10 THEN PRINT: HTAB 3
PRINT CHRS(x); : NEXT: PRINT

VTAB 22: PRINT " Hit any key to cont": GET ald
GOTO 50

REM reset table from R0M characters

FOR x = 49997 T0 50018: READ d: POXE x, d: NEXT
CALL 49997

FOR x = 0 TO 1036

POKZ 28020+x, PEEK(50020+x)

NEXT: RETURN

BASIC GR mode
The VRAM map is as follows:

Pages Table

0-23 color

24-26 name

32-52 pattern

53-55 pattern (characters)

In the GR mode the VDP is in the graphics 2 mode. The name table is always
1,2,3,4, etc., except at the end where it is ASCII as in text mode. Similarly,
the pattern table is always FC,F0,CO,FC,FO, etc., to make 6x4 pixel blocks,
except at the end. The only table that is changed is the color table, which

creates the

lores graphics blocks.

41
BASIC HGR mode
The VRAM map is the same as in the GR mode. However, this time it is the

pattern generator table that is changed, allowing each bit to be set. For a
blank screen the pattern table is all zeros and the color table all §11
(plack). As graphics are drawn the appropriate pattern and color blocks are

set.

BASIC HGR2
In this mode the memory map and the mechanism of implementing graphics are

the same as in HGR except that the character set is omitted and hires graphics

cover the whole screen.
In any of the modes described sprites can be added in regions of VRAM not
used by BASIC, or direct changes can be made in the VRAM used by BASIC.

OPERATING SYSTEM ROUTINES

The VRAM tables can be set up most easily using OS routines. The routines
are described below.
FD1A Block write to VRAM. HL= address in RAM to be moved. DE= address in
VRAM. BC= number of bytes to be moved.
FDID Block read from VRAM. DE= address in RAM. HL= address in VRAM. BC=
number of bytes to be moved.
FD20 Write to VDP registers. C= byte to be sent. B= register to be written.
FD23 Read register 8. The result is at FD63.
FD26 A to VRAM. HL= address in VRAM. A= byte put in VRAM. DE= number cf
times A is repeated.
FD29 Write to VDP registers. HL= address in VRAM to be written. A= register
written to.
FD2C Write table to VRAM. HL= table address in RAM. DE= entry # in table, A=
table number (O=sprite att., l=sprite gen., 2=name, 3=pattern, 4=color). IY=
number of entries to be moved.
FD2F Read table from VRAM. HL= address in Ram to be written to. The rest is
the same as FD2C.
FD32 Calculate VRAM offset. D= pattern position y. E= pattern position x.
Returns with DE= y*32+x.
FD35 Calculate pattern position. DE= signed x or y (16 bit numbers). DE is
divided by 8 and rounded from =128 to +127.
FD38 Reset character set. Loads character set from ROM to VRAM .
FD3B Writes sprites to attribute table in VRAM. A= number of sprites to be moved.
DE= address of sprite attribute table in RAM. HL= address of sprite order
order table in RAM. The sprite order table is a list of sprite numbers that
specifies the order they will be put in the sprite table. The sprite attribute
table in RAM is a duplicate of that in VRAM. The order table is all that
requires changing to avoid "fifth sprite flickers”.

CHAPTER 10. Sound

The sound chip on the Colecovision (top) board is the Texas Instruments
SN76489A. We learned about this chip from articles in the December, 1980
Kilobaud Microcomputing by Steve Marum and in the July, 1982 Byte by Steve
Ciarcia. It has three square wave tone generators and a noise generator, not
nearly as sophisticated as the Commodore SID chip, but definately fun to play
with. A block diagram of the chip is shown below.

p L T I e e o

I TONE GENERATOR @1

I

oe =170

-Jd_-'(ﬂh
v PHERALS|

iy
BQQJ—
o2 l—'l— l
RaEY 2] __r—“i}*rLrL}ﬁmm: :
1 L8 e “m‘m‘H ATTENUATION }—

ATTENUATION

ANALOG
SUMMER

TOME GENERATOR @2

3 __AuDIO

! | neut

| | > 7 AUDIO
AUDIO *ouTPuT
o

TONE
GENERATORS
CE Y

=

P |
Pl kl
Yee GND

The SN76489 sound chip
Texas Instruments uses an odd convention for describing the order of bits in a
byte and calls the most significant bit (MSB) 0, or DO for the data bus.
instead of 7, or D7.

The pin numbers of the SN76489A are also shown in the figure. The
chip is addressed via the WE (write enable), CE (chip enable) and ready inputs.
It is mapped in the IN/OUT address space of the Z80 at FO (actually the lower 5
bits are not decoded so any number between EO and FF, or 224 and 255 in
decimal, will access the chip using "OUT" instructions in machine language).
There is only cne port to address and the various functions are accessed by the

numbers given to the port. These 8 bit numbers are divided up, as shown below,
to give a 10 bit frequency value (divided between two bytes of input), a 3 bit

control register which specifies eight functions, a 4 bit attenuator value
which controls the volume, a noise type bit and a 2 bit noise clock value.

When the MSB is 1 the next three bits are the control register that specifies
the meaning of the lower 4 bits. When the MSB is 0 the lower 6 bits are the
most significant bits of the 10 bit frequency value for the most recently
specified tone generator. The frequency of the square wave produced is the
clock frequency divided by 32 times the 10 bit number specified as the
fraquency value.

43

Types of data bytes sent to the SN76489.

UPDATE FREQUENCY (2 BYTE TRANSFER)

REG ADDR DATA DATA
\ 0
nolm{nz Fslnlssisa x}lm[Fl[FRIFllﬁl Fs
FIRST BYTE SECOND BYTE

UPDATE NOISE SOURCE (SINGLE BYTE TRANSFER)

REG ADDR SHIFT

A0 |n1lnz x | Fal| neo [ns:

UPDATE ATTENUATOR (SINGLE BYTE TRANSFER)

REG ADDR DATA

~ [[m[=][]

The control register, specified by RO, Rl, and R2 indicates the following
functions:

0 tone 1 frequency

1 tone 1l volume

2 tone 2 frequency
3 tone 2 volume

4 tone 3 frequency
5 tone 3 volume

9 noise type

7 noise volume

The noise generator can be controlled to produce different types of noise
at different volumes. The types are white (hiss) and perodic (motors). The
frequency generating both noise types has & values specified by the 2 bit
number formed by NFl and NFO, or can be driven by voice 3, allowing
continucusly variable noise frequencies of phaser type sounds.

In practice it is likely that you will program the SN76489A in BASIC via a
short machine language subroutine, and so the numbers you will use will be
decimal. The table below shows the numbers used to control the chip in
decimal.

sound control numbers in decimal.

Pitch Volume
first byte second byte high off
voice 1 128-143 0-63 144-159
voice 2 160-175 0-63 176-191
voice 3 192-207 0-63 208-223
noi se 224-227 perodic (227=voice 3)
228-231 white (231=voice 3)

240-255 volume (255=0ff)

Pitch control

I=frequency value =0 to 1023
note frequency = clock /32*I
for voice 1: byte 1 (128-143) = 128*I-INT(I/16)*16
byte 2 (0-63) = INT(I/16)
For voice 2 or 3 start with 160 or 192 for the first byte, instead of 128. For
a chromatic scale use I=120,127,134,142,150,159,169,179,190,201,213,225,240 and
multiples of these numbers. This scale was generated by dividing an octave
(factor of two in frequency) into twelve notes spaced equally on a logrithmic
scale. The freguency of the next note (half step) is the frequency of the
current note times the twelth root of two.
To pass numbers to the SN76489 from BASIC a short machine language

subroutine is needed. A simple example is:

LD A,n

LD C,FO

ouT(c), A

RET
This code can be poked into RAM as illustrated in the following programs. The

first can be used to experiment with the chip, and the second is an interesting

random music generator.

5 REM SOUNDTEST

6 REM
10 HIMEM :53000
14 REM poke in machine code
15 DATA 62,0,14,245,237,121,201

20 FOR x =1 TO 7
30 READ d: POKE 53000+x, d
40 NEXT
100 INPUT “"number (0-255)"; n
110 POKE 53002, n
120 CALL 53001
130 GOTO 100

5 REM RNDMUSIC
6 REM
10 HIMEM :53000
14 REM poke in machine code
15 DATA 62,0,14,245,237,121,201
20 FCR x = 1 TO 7
30 READ d: POKE 53000+x, d
40 NEXT
50 INPUT "which piece would you like?"; p
60 dm = RND(-p): dm = RND(9)
180 FOR m = 1 TO 2
190 FOR t = 300 TO 30 STEP =2
199 REM think of note
200 v = RND(9)*220
205 REM play note
210 POKE 53002, v
220 CALL 53001
230 REM delay
240 FOR w = 1 TO t: NEXT
250 NEXT t: NEXT m
300 POKE 53002, 144: CALL 53001
310 POKE 53002, 176: CALL 53001
320 POKE 53002, 208: CALL 53001
340 FOR d = 1 TO 4000: NEXT
350 cALL 58321

The 0S has routines, originally from the 0S7, that act as a music editor.

They are complicated, but create envelopes and frequency sweeps that are hard

to make otherwise. The music system is a series of tables, described later,

which define the timing and notes.
holds instructions for each note.

The main table is the note table which
The swept notes can be used as an envelope

with an initial volume period followed by a linear decrease, or as sound

effects. The note table instructions have the following formats:

rest
7 8 5 4 3 2 1 0
:CH# : 1: length :

frequency swept note

7 686 5 4 3 2 1 0
Q,:CH$: 0 0 0 0 0 1
1, F2 F9
2,:volume : 0 0FOFl
3, 3 of steps in sweep
4, step length: lst step

5, step size

volume and frequency swept note

7 6 5 4 3 2 1 0
0,:CH# : 0 0 0 0 1 1
1, F2 F9
2,: volume : 0 O FO Fl1
3, # of steps in sweep
4 freq step len: lst step len

5, freq step size
6,:vol step : vol step #
7,vol step len: vol init len

special effect note

7 6 5 4 3 2 1 0
O, CH# : 0 0 0 1 0 o0
1, address lo
2, address hi

simple note
7 6 5 4 3 2 1 0
0, :CH# : 0O 0 0 0 0 O

1, F2 Fo
2, : volume : 0 0FOF1
3, 't length :

volume swept note
7 6 5 4 3 2 1 0O
O, :CH# : 0 0 0 0 1 O

2, :init vol : 0O O FO Fl
3, length of note

4, step size: # of steps
5, step length: init length

noise "note"
7 6 5 4 3 2 1 0
o, 0 0 0 0 0 0 1 0
1, volume 1 0 £t FOFL
2, length
3,vol step size: vol step #

4, step len : lst step len

end or repeat song
7 6 5 4 3 2 1 0
0, CH# : 0 1 R 0 0 O

45

In each table the numbers form 7 to 0 at the top are the bits in each

byte, and the numbers at the left are the byte numbers in the block. The
numbers for frequency bits (eg. F5) are TI reverse nomenclature. Otherwise the

four bit entries such as "step size" or "volume"” can range from 1 to 15.
The note table is pointed to by other tables as follows:

Table Table Song Table Note Table Qutput Table
FEGE: song table addr. song 1 addr. song 1, note 1 song 1, current
FE70: output voice 1 addr. output 1 addr. note 2 note, (10 bytes)
FE72: output voice 2 addr. song 2 addr. note 3
FE74: output voice 3 addr. output 2 addr. etc, song 2, same
FE76: output noise addr. song 3 etc. song 2, note 1

The output table is necessary because the sound chip makes a click each
time it is written to and the sound routine checks the output table and writes
to the chip only if there has been a change. The output table has the
following format:

Output Table
765432310
0,CH#: song #
1, addr. next note
2, * high byte
I e e -
4,vol.:vol0 0 FOFl

S, length
6,step length:lst step
7, step size

8, vol step:vol step #
9, vol stp len: vol init len

These tables point to each other, with the only fixed address being FE6E. The
OS routines that run the system are:

FD50 Init sound tables. HL= address of song table, B= number of output tables
to be used.

FD53 Sound off. No setup required.

FDS56 Start song. B= song # to be started.

FD59 Sounds. No setup. Call repeatedly. Sends output table to sound chip and
updates output. Can be called repeatedly from BASIC or outomatically by the
interrupt at $66 that is usually used for FLASH. Put CALL FD59, RETN at §66 in
zero page, and replace it with RETN to stop.

The following program illustrates how to use the music routines and tables
to make a three voice music editor. Lines 4-7 £ill an array with a scale.
Line 10 clears the poke limit. Lines 20-70 set up the song, output, and table
tables. Lines 75-140 input data for each note and lines 500-540 poke it into
the note table. lines 1000-1020 call "start song”, and lines 1025-1040 call
"sounds" to play the notes. Notes are entered as the]atters a through g, with
upper case A through G for sharps. We are still quite inexperienced in the use

of these routines, and you should try modifying this program to include swept
notes and envelopes.

REM sound pregram by B. Hinkle
DATA 213,0,127,142,0,169,190,201,225,120,134,150,159,179
HIMEM :37499: DIM p(l4): x(1) = 40000: x(2) = 40800: x(3) = 41600
REM read scale into an array
FOR x = 1 TO 14: READ d: p(x) = d: NEXT x
10 POKE 16149, 255: POKE 16150, 255
20 DATA 64,156,76,154,96,159,86,154,128,162,96,154: REM song table
30 FOR x = 39000 TO 39011: READ d: POKE x, d: NEXT
40 DATA 33,88,152,6,4,205,80,253,201: REM 1init sound tables
50 FOR x = 37550 TO 37558: READ d: POKE x, d: NEXT: CALL 37550
60 DATA 88,152,76,154,86,154,96,154,106,154
65 REM Table table data
70 FOR x = 65134 TO 65143: READ d: POKE x, d: NEXT
73 REM main loop
75 HOME: PRINT: PRINT
80 INPUT "pitch (g to quit,p to play)?“; p$
83 IF pS = "g" OR p§ = "p" THEN 150
90 INPUT "octave (1-8)2?2"; oc
95 IF oc ¢ 1 OR oc > 8 THEN 20
100 PRINT: INPUT "voice #(1-3)?"; v: IF v < 1 OR v > 3 THEN 100
110 PRINT: INPUT "# of beats (1=1/4 note)?"; n
120 IF n < .032 OR n > 4 THEN PRINT " length must be .032 to 4 (.032=1/32 not
e, 4=whole note)": GOTO 110
140 GOTO 500
145 REM gquit or play song
150 IF p§ = "g" THEN END
160 POKE x(1), 16: POKE x(2), 80: POKE x(3), 149: GOTO 1000
499 REM poke note into memory
500 IF ASC(p$) < 71 THEN p = p(ASC(p$)=-64)*oc
510 IF ASC(pS) > 96 THEN p = p(AsSC(p$)-89)*oc
520 POKE x(v)+l, p-INT(p/256)*256
530 POKE x(v)+2, INT(p/256): POKE x(v)+3, n*64-1
540 POKE x(v), v*64: x(v) = x(v)+4: GOTO 75
999 REM play song with all 3 voices
1000 DATA 6,1,205,86,253,201: REM calls start song
1005 RESTORE: FOR t = 1 TO 45: READ r: NEXT
1010 FOR x = 37570 TO 37575: READ d: POKE x, d: NEXT: CALL 37570
1020 POKE 37571, 2: CALL 37570: POKE 37571, 3: CALL 37570
1025 do = PEEK(64885)
1027 PRINT: PRINT "hit any key to return”
1030 CALL 64857: REM call sounds
1035 dn = PEEK(64885): IF dn <> do THEN 75
1040 GOTO 1030

SO W

47

Chapter 11, The Game Controllers

The game controllers are read in the Z80 in/out space at FC,FE (cont. 1)
and FD,FF (cont. 2), which overlaps with the sound generator but uses only IN
commands instead of OUT commands. The numbers returned by IN commands in
machine language are shown below in decimal. When nothing is pressed, zero is
returned. Numbers are in decimal.

IN FD(#1) or FP(#2) IN FC(#l) or FE(#2)
Joystick N 1 Keypad 0 5
NE 3 1 2
E 2 2 8
SE 6 3 3
s 4 4 13
SW 12 - 12
W 8 6 1
NW 9 7 10
fire 64 8 14
9 4
9
* 6
arm 64

Operating system routines that handle the controllers are
read-controllers at FD3E and read spinner at FD4l. Read-controllers reads
and debounces the controllers and places the result in RAM in 12 bytes starting
at FESA. These bytes are: player # enable(2 bytes), followed by: fire, Joy,
spinner, arm and keypad, first for player 1 and then for player 2. The keypad
is decoded so that 5 gives 5 not 12, but the other data is as described. The
spinner is used with some attachment we don‘t have and know nothing about.

Chapter 12. AdamNet

AdamNet is the serial bus that connects the tape, printer and keyboard to
the master 6801 microprocessor. It is a half-duplex 62.5 kilobaud
token-passing network with four wires: data, reset, +5V, and GND. Commands and
responses, each being either data or control codes, are passed back and forth
but are not accessible directly to the Z80 microprocessor. The Z80 controls
what happens on AdamNet by putting numbers in RAM starting at FEC4 in blocks of
21 bytes called device communication blocks (DCB's). These bytes have the
following information:

Byte Function
0 status

1-2 buffer address
3-4 buffer length
5-8 sector numbers
9-15 nothing?

16 device number
17-18 maximum length

19 device type

20 node type

The DCB's can be seen by printing page 254 and the first line of 255 with
printmem. The rest of page 255 is wasted waiting cor new devices on AdamNet
(15are possible). The status byte is usually $80 or 8C. If it is set to l, as
by the status request routine at FC7E,the status of the device is returned in
A. If this byte is set to 2 the device is reset. The buffer address points to
the area of RAM where the master 6801 will put data from the device. The
device numbers are as follows:

0 Master 6801
Keyboard
Printer
Floppy disk 1
Floppy disk 2
Tape 1
s18 Tape 2

m W s N

Fortunately, it is not necessary to worry about all of the above details,
because operating system routines described in the chapters on the tape,
printer, and keyboard will do it for you. Subroutines which directly manage
AdamNet are: reset net, scan pcb's, move pcb's, find DCB, and status regquest.

49

Chapter 13, The Keyboard.

The keyboard has its own 6801 microprocessor with programs to scan and
debounce keys and store input in a buffer. When a’send character'command is
received from the master 6801 via AdamNet one ASCII code is sent back. A reset
command zeros the buffer and unlocks the shift lock. The wires to the keyboard
are GND, +5V, reset, and read-transmit data. The key codes are standard ASCII
as listed in the SmartBASIC manual with the following additions:

128 home 144 wild card 160 wup arrow
129: I 145 undo 161 right arrow
130 11 146 move 162 down arrow
131 III 147 store 163 left arrow
132 1V 148 insert 164 cntrl up
133 Vv 149 print 165 ecntrl right
134 VI 150 clear 166 cntrl down
151 delete 167 cntrl left
137 shift I 152 shift wild card 168 up + right
138 shift II 153 shift undo 169 right + down
139 shift III 154 shift move 170 down + left
140 shift IV 155 shift store 171 left + up
141 shift Vv 156 shift insert 172 home + up
142 shift VI 157 shift print 173 home + right
158 shift clear 174 home + down
159 shift delete 175 home + left

184 shift backspace
185 shift tab

The master 6801 places the ASCII value received from the keyboard in RAM
at FD75. This can be peeked in BASIC for reading the keyboard on the fly
without stopping. One problem with this is that it does not notice the second
time the same key is pressed. To include this possibility you can POKE FD75
with 0 (first change the POKE routine with POKE 16149,255: POKE 16150,255 so
that it will work up there) after each PEEK and then if the result of the next
peek is 0 you know a key has not been pressed.

An OS routine at FCGC reads the keyboard (checks the DCB) and then puts
the contents of FD75 in A.

51

CHAPTER 14. The Printer.

The printer is on AdamiVet with device number 2. It is written to via a
device communication block (see AdamNet).One OS subroutine is all that is
necessary to control the printer. It is located at FC63 (print buffer), and
prints out RAM starting at the value of the HL registers and stopping when a 3
is reached. Most non-ASCII numbers are ignored, but some are control codes as
listed below.

Printer Control Codes

Number (dec) Function
3 Stop
8 Backspace
10 Line feed
11 Half step line feed
13 Return, forward printing
14 Reverse direction printing

The following program illustrates the use of this routine. The short
machine language routine sets HL to $00l1 and then calls F515. The rest loads
a sample text string with control codes into ram starting at §0011 and then
calls the machine language routine.

1 REM printer routine demo
S5 PRINT
10 DATA 33,17,0,205,21, 245,201
20 FOR q = 0 TO 6
30 READ p: POKE 3+g, P
40 NEXT q
S0 DATA 13,65.66,67,11,68,69,70.10,14,71,72,73,10,13,74,75,76,3
60 FOR x = 0 TO 18
70 READ p: POKE 17+x, p
80 NEXT
90 CALL 3

Chapter 15. The Tape.

Two tapes and two disk drives can be connected to the Adam via AdamNet,
each using similar software but having its own device number (See Chapter 12). We
have only one tape drive and will concentrate on that configuration. The 6801
that runs the tape has many functions. It controls the two 12V DC motors that
maintain tape speeds of 20 in./sec. forward for reading and writing data, and
80 in./sec. fast forward or rewind, using a signal from the small wheel that
touches the tape. It also checks for the presence of a tape in the drive with
a pin at the top, applies brake current when the tape stops and a weak reverse
pull on the motor not driving the tape to keep the tape tight, in addition to
reading and writing data. Data is recorded at 1.4K bytes/sec on two tracks of
128K bytes each. On game tapes the blocks of 1K bytes are numbered
consecutively from 0 to 7F on the first track and from 80 to FF on the other.
On other tapes the blocks are arranged as 40-7F, 0-3F on one track and 80-FF on
the other, so that the directory in block 0 is in the middle and distances from
it to other files are shorter.

The tape is controlled via AdamNet by a device control block in RAM at
FEC4 (see AdamNet chapter). It can be controlled most easily using OS routines
outlined below.

FCF3-read block. A= device # (8 for tape). HL= table address in RAM to be
written to. BCDE= sector #.

FCF6-write block. A= device #. HL= address in RAM to be read. BCDE= sector
%,

FCFC-look for file. HL= address of buffer with name of file. Z is set if
found.

Examples of the use of these routines from BASIC programs are at the end of
this chapter.

Each tape begins in block zero with a machine-language program that is
called if reset is hit. On ordinary tapes this is a jump to word processor,
but on the SmartBASIC tape it is a 100 byte program that loads BASIC from the
tape and then jumps to the beginning of BASIC at (C80D).

The tape directory starts at block 1, and consists of 26-byte records, the
first being the volume record. The volume record consists of: name (12),
directory size (1), directory check (4), volume size (4), nothing (2), and date
(3), where the number of bytes is shown in parenthesis. The directory size
byte has bit 7 set if the Tape is delete protected, and the lower 6 bits
specify the number of blocks allocated to the directory. The directory check
is a code that is always 55 AA 00 FF. Following the volume record are the file
records with the following format: name (12), attribute (1), start block (4),
length (2), used length (2), last count (2), and date (3). The name ends with
the file type (A,a,H or h) and a 3. The attribute byte is as follows:

bit indication
"permanent" protect

write protect
read protect

user file
system file

file deleted
execute protect
not a file

O = N Wwh Vo

53

A typical user file has an attribute byte of $10. The start block bytes in the
file record point to the first block of the file, and the last count gives the
number of bytes in the last block of the file. The catalog command in BASIC
loads the directory to RAM starting at page D4, where you can look at it with
printmem. To recover deleted files you can change the directory in RAM and
then put it back on the tape with the write block OS routine. This is done by
the tape editor program below. The program asks what block number you want to
see, reads it, and displays it half a page at a time on the screen in the same
format as printmem, and asks if you would like to change any bytes. When you
are done it stores the edited block back on the tape. To edit the directory
ask for block 1.

3 REM -tape editor by 3. Einkle

5 PRINT "Insert tape into drive #1": INPUT " hit return"; a$
10 BEIMEM :29999: x$ = "0123456789ABCDEF"
20 DATA %2,8,1,0,0,17,0,0,33,184,136,205,243,252,201

25 RESTORE: HOME: o = 9

30 FOR x = 30000 TO 30014: READ d: POKE x, d: NEXT

40 PRINT: INPUT "Block # to be edited?"; x

50 POKE 30006, x: CALL 30000: REM -read block 'x' to 35000
60 FOR x = 35000 TO 36023 STEP 128

65 HOME: tb = 17: bb = 17

67 PRINT "page:"; INT((x-35000)/256+1);

70 PRINT TAB(13); : FOR e =0 T0 7

80 PRINT e; " "; : NEXT e: PRINT

83 PRINT "block:"; PEEK(30006);
85 PRINT TAB(13); : FOR e = 9 TO 16
87 PRINT MIDS(xS, e, 1); " "; : NEXT e: PRINT

89 o = 10-0
90 FOR 1 = 0 TO 127 STEP 8
95 REM -print character part of block

100 FOR § =0 T0 7
110 IF PEEK(x+i+j) < 32 THEN PRINT "="; : GOTO 125
115 IF PEEK(x+i+j) = 128 OR PEEK(x+i+J]) = 148 THEN PRINT "="; : GOTO 125

116 IF PEEK(x+i+j) = 151 THEN PRINT "="; : GOTO 130

117 IF PEEK(x+i+j) > 159 AND PEEK(x+i+j) < 162 TEEN PRINT "="; : GOTO 125
120 PRINT CHRS(PEEK(x+i+]));

125 NEXT j: PRINT " ";

130 IF INT(1/16) = 1/16 THEN PRINT MID$(x$, i/16+0, 1); : GOTO 133

132 PRINT " ";

133 PRINT " ";

135 REM -print hex part of block

140 FOR] =0 T0 7

w = PEEK(x+i+])
PRINT MIDS (xS, INT(w/16)+1, 1;

PRINT MIDS(x$, (w/16=-INT(w/16))*16+1, 1);

NEXT j: PRINT: NEXT i: PRINT

180 INPUT "Does this screen require changing (y/n, e to exit)?"; a8
190 IF a$ <> "y" AND a$ <> "n" AND a$ <> "e" THEN 180

195 IF a$ = "e" THEN 280

200 IF a8 = "n" THEN NEXT x: GOTO 280

210 PRINT: INPUT "Byte # to be changed (0-FF)?"; b$

230 GOSUB 520: IF n(1) = 17 OR n(2) = 17 THEN 210

255 I# n(1) > 7 THEN n(1) = n(1)-8

257 ad = x+16*n(1)+n(2)

260 INPUT "Change byte to (0-FF)2": b3

263 GOSUB 520: IF n(1) = 17 OR a(2) = 17 mEr 260

265 REM -change byte and write it to tape

270 POKE ad, n(1)*16+n(2): o = 10-0: GOTO 65

280 INPUT "Would you like these changes to be permanent on tape (g/n)?"; ad
290 IF a8 = "y" THEN POKE 30012, 246: CALL 30000: GOTO 25

300 IF a$ = "n" THEN 25

310 PRINT "yes or no please": GOTO 280

510 REM -change byte # to decimal form

520 FOR be =1 T 2: FOR k = 1 T0 16

530 IF MID$(bS, be, 1) = MIDS(xS, k, 1) T™EN n(be) = k-1: k = 16
540 NEXT k,bc: RETURN

o
W 4
ooow

All files, except "A" files in BASIC, start with a "header" which is
usually one page (256 bytes) long. The third byte is a code that specifies the
type as follows:

1 SmartWriter

2 SmartBASIC

16 FlashCard Maker
If you have some other commercial program that makes files you can't read from
BASIC use the tape-edit program above to look at the header and see what code
they use. The complete header of a SmartWriter file follows:

Byte Contents
0 header size low (00)
1 header size high (01)
2 file type
3 top margin
4 bottom
5 left
6 right
7 liné spacing

8-89 tab array

The following program will copy the SmartBASIC tape to a blank Adam tape.
It starts with a short machine language program which sets up and calls the OS
routines to read or write to the tape. The assembly language is:

LD BC,Q0

LD DE, block #

LD A,8

LD HL, buffer (31000)

CALL FCF3 (read one blecck)

RET
The routine reads one block, starting at zero, and loads it to the buffer. The
program then checks to see if the block was empty and if so loads a new block
into the same buffer. When a active block is loaded the buffer pointer is set
to the next 1,024 bytes. This continues until 16 active blocks are in the
buffer. It then asks you to put in the new tape and writes the 16 blocks to
the original locations. It does this by poking the address of the write one
block 0S routine instead of the read address in the above machine language and
calling it. The reason for this complexity is to minimize the number of tape
switches you have to make, which can be as many as l6.

2 REM backup program by B. Einkle

5 HIMEM :29999: DIM d(15): q = 20: n = 1

10 DATA 1,0,0,17,0,0,62,8,33,24,121,205,243,252,201
20 POR x = 30000 TO 30014: READ d: POKE x, d: NEXT

22 PRINT "switch #"; n

23 PRINT "place master tape in drive #1": PRINT " hit return": INPUT z§
0i=0

%5 REM loop for reading blocks

40 POKE 30004, a: CALL 30000

55 IF PREK((a-INT(a/16)*16)%1024+31000) = 255 THEN 70: REM block empty
50 POKZ 30010, PEEK(30010)+4: d(i) = a

65 1 = i+1: IF i = 16 THEN 100: REM 16 full block have been read
70 a = a+1: IP a = 256 T™EN q = i: GOTO 100: REM end of tape
30 GOT0 40: REM read another block

55

29 REM loop for writing blocks

100 POKE 30012, 246: POXZ 30010, 117

103 PRINT "place slave tape in drive #1": PRINT " hit return": INPUT z$

110 FOR s = 0 T0 15

112 IF s = q THEN PRINT "end": END: REM end of tape

200 POXE 30004, d(s): POXE 30010, PEEK(30010)+4: CALL 30000: REM write block
300 NEXT s: REM write 16 blocks

310 n = n+1: RESTORE: GOTO 20: REM Read next 16 blocks

The following revised cartridge-copy will put 7 cartridges on one tape,
and moves the DCB's to free up the top of RAM. It does not keep track of
names, but gives each program a number.

The tape will load and run the game when you hit reset with the tape in the
drive. Of course, cartridges are pretty tough and do not normally need to be
backed up, but we thought it would be an interesting exercise.

3 REM 2nd multiple cartridge copy program by B. Hinkle

5 HIMEM :30999

10 DATA 1,0,4,17,0,0,33,40,160,62,13,211,127,26,50,253,124

20 DATA 62,1,211,127,58,253,124,119,35,19,11,120,177,194,33,121,201

30 POKE 102, 237: POKE 103, 69: REM disable interupt routine

40 FOR x = 31000 .TO 31033: READ d: POKE x, d: NEXT: REM read cartridge

50 paATA 62,8,1,0,0,17,0,0,33,40,160,205,246,252,201
60 FOR x = 40100 TO 40114: READ d: POKE x, d: NEXT: REM write tape
70 PRINT "Insert slave tape into drive #1 and check cartridge in slot"®
72 PRINT: PRINT
73 INPUT "Input number (1-7) of cartridge on tape?"; n
75 REM write 32K of cartridge to tape
77 PRINT: PRINT "REMEMBER: keep your own list of cartridges on this tape,”:
78 PRINT " because cartridges are not listed in the directory.”
80 FOR i = 0 TO 31
83 POKE 31005, i*4+128: POKE 40106, i+(n-1)*32+2
90 CALL 31000: CALL 40100: NEXT i
100 REM ml routine for block 0
110 POKE 40106, 0
120 DATA 243,49,0,72,33,0,8,62,2,205,41,253,33,0,0,62,3,205,41,253,33,0,32,
62,4
130 DATA 205,41,253,205,56,253,62,240,33,0,32,17,32,0,205,38,253,1,224,1
140 DATA 205,32,253,1,31,24,33,0,8,17,3,3,205,54,252,24,7,67,65,82,84,32
150 DATA 35,63,6,7,33,62,200,126,205,57,252,35,16,249,217,17,0,128,217
155 DATA 33,192,254,17,0,73,1,63,1,237,176,33,0,73,205,123,252,17,0,2,33,11
7,200
160 paTA 1,63,0,237,176,195,0,2,205,108,252,205,57,252,214,48,71,33,226,255
170 DATA 17,32,0,25,16,253,235,6,2,197,33,0,3,1,0,0,62,8,205,243,252,1,0,4,9

180 DATA 19,124,254,67,32,238,217,33,0,3,1,0,64,237,176,217,193,16,221,62,3,
211,127,195,0,0

200 FOR x = 41000 TO 41179

210 READ d: POKE x, d: NEXT: CALL 40100

250 PRINT: PRINT "copy #"; n; " is complete": END

We have always inserted cartridges with the machine on and have not had any
problems, although we may be very lucky. If you want to do this it saves time
putting multiple cartridges on one tape, and you can add these lines:

95 INPUT "another cartridge (y/n)?"; DS
97 IF D$="y" THEN GOTO 70

55A

Some cartridges do not run from tape when copied by our program. There
are at least two possible reasons for this. Some cartridges have protection
routines which prevent them from working when they are in RAM instead of ROM,
and AdamNet uses the top two pages of RAM which creates a conflict if the
cartridge program gces that high. If a cartridge doesn't work with cart-copy
you can look at it with the programs below to see what the problem is. This is
not easy, but is a second game to play with the cartridge which may well be
better than the first. It is also interesting to PEEK around cartridge ROM
with cart-viewer because of the graffiti left there by frustrated programmers.
One protected cartridge that Ben unlocked was River Raid, which checks to see
if it is in RAM with a routine at 80B4-80C3. You can deactivate this routine
on the tape copy with tape-edit by reading block 2 and changing byte 35 from 00
to 55. The copy will then run perfectly. Most cartridges do not use the whole
32K space they have, but all start at $8000. Most have 535 AA for the first two
bytes, which is some sort of code. The start address of the program is stored
at 800A,B. Cartridges use RAM at $7000-73FF so if you find a LD command to an
address above $8000 it must be a protection routine. 0S7 routines are from 0
to $2000. We have made the following additions to viewer and the disassembler
so they will work with cartridges and can be used as deprotection tools.

Cart-viewer additions to viewer.

2 LOMEM: 30000:POKE 102, 237:POKE 103,69

3 DATA 62,13,211,127,17,72,113,33,0,0,1,0,1,237,176,62,1,211,127,201
4 FOR x=28000 TO 28019: READ d: POKE x,d: NEXT

7 GOSUB 100

100 PNKZT 28009,p: CALL 28000: RETURN

Cart-disass additions to disassembler.

3 LOMEM: 28256: POKE 102,237: POKE 103,69

10 INPUT "address?";ra: GOSUB 6100

22 PRINT ra; TAB(7)

118 ad=ad+l: GOSUB 6200: op=PEEK(ad)

150 IF n>OTHEN ad = ad+l: GOSUB 6200: n=n-1: op= PEEK(ad): GOSUB 120
160 IF n>0 THEN ad=ad+l: Gosub 6200: op= PEEK(ad): GOSUB 120
199 ad=ad+l: GOSUB 6200: GOTO 20

4000 GOTO 7000

5000 a= INT(ra/4096)

5020 b= ra-a*4096

6015 ocad=ra

6020 ra=ra+op+l: GOSUB 5000: ra=oad: RETURN

6100 POKE 27909, INT(ra/256)

6110 POKE 27908, ra-INT(ra/256)*256

6120 CALL 27900

6130 ad=28000

6140 RETURN

6200 ra=ra+l: IF ad=28256 THEN 6100

6210 RETURN

7000 DATA 62,13,211,127,17,96,109,33,0,0,1,0,1,237,176,62,1,211,127,201
7010 FOR x= 27900 TO 27919: READ d: POKE x,d: NEXT
7020 GOTO 10

55B

Scme people have asked about the prompt "insert cartridge", when you are
only supposed to insert a cartridge when the computer is turned off. We have
always inserted cartridges with the computer on and have never found ill
effects, but to be sure you should follow Coleco's instructions.

Disks

Disks are on AdamNet and behave just like tape drives except that they
have different device numbers (4 and 5), have less storage (160 blocks), and
are noticeably faster. To make our programs work with a disk you can change
the device numbers in the machine code. In Backup, if you change the 8 in line
10 to a 4, the program will copy disk to disk in drive 1 (also change the 256
in line 70 to 160). 1If you do no: change line 10, but add a new line "10l POKE
30007,4", it will copy tape to disk (not the whole tape of course). In
cartridge-copy if you change the 8 in line 50 to a 4, it will copy to disk. 1In
tape-editor if the 8 in line 20 is changed to 4 it is a disk editor.

Making your own "Digital Data Packs".

We originally made a copy of an Adam tape with a commercial dup machine
often found in tape stores. Such machines copy both sides of a tape at once,
take one minute and cost $4. Since then we have tried our home tape recorder
and find that it works fine, but takes one hour. Any tape you copy will be
exactly duplicated, including the programs. You can INIT the copy to reuse it,
however. If you have an Adam tape from a non-Coleco source you can copy it as
you would any audio tape (both sides, in stereo or mono), using a high volume
record setting in the middle of the red on the VU meters. To copy a Coleco DDP
you must drill two holes where cassettes usually have holes, and to play it in
Adam you must drill two holes in the back of the copy. The best audio
cassettes to use are Sony HF60’s which currently cost 69 cents in Ithaca.

Chapter 156. The Power Supply

The power supply, located in the printer, provides 18V unregulated for the
ribbon solenoid and the following regulated voltages: +5V (3 Amps), =5V (0.2
Amps), +12VI (2 Amps, inductive, for motors), and +l12VL (0.3 Amps, noise free
for logic). The regulation should hold from input "110 VAC" voltages from 108
to 132V. The pins of the cable connecting the printer to the main console are
as follows:

1 brown +12VL
red +12VI
orange +5V
yellow =5V
green GND
blue AdamNet
violet reset

RSN S ¥ BT - PV S

It is hard to.imagine an application where someone would want to provide
another power supply, but if it is absolutely necessary we recommend using a
110VAC generator. Anything else would be very complicated, especially
considering the -5V.

SHOE

YEAU TUESE. OLDACME 295
WILL 7D THIS.. JUS' LIKE TUEM
18M 4025 ANDAPPLE LS.

adi

o i _
T datiersan Lommunscations. inc 1908

Coutrtuted Oy Tribune Medus Servcen i

Chapter 17. The Expansion Connectors.

The expansion connectors were designed for use with 64K expansion RAM,
modem, and expansion ROM. They can be used for any hardware project, however,
such as a printer interface, speech generator, analog to digital or digital to
analog converter. We do not recommend trying to design your own hardware
unless you have some experience, since you could easily dammage your Adam.
Unlike the Apple II bus, all three connectors are different, and there is no
convenient decoding to address a slot. The control lines are defined on the
next page where Z80 pinouts are given. The address (A), and data (D) lines are
buffered from the Z380.

Expansion connectors (back)

64K RAM
RTC I/0 ROM
GND 29 30 +5V GND 43 44 +5V GND 29| |30 +5V
27 28 A7 Al4 41 42 a7 Al4 27 28 al2
25 26 Al3 39 40 A12 All 25 26 A8
As 23 24 A6 A6 37 38 as A6 23 24 A9
A3 21 22 a4 A5 35 36 A9 As 21 22 all
Al 19 20 A2 A4 33 34 all A4 19 20 A3
a0 17 |l 18 7 Al0 31 32 A3 A10 17 19 A2
DO 15 16 D6 Al 29 30 A2 Al 15 16 D7
pL 13 14 DS A0 27 28 D7 A0 13 14 D6
p2 11 12 D4 po 25| |26 pe po 11 12 DS
BMI 9 10 D3 pL 23 24 DS pr 9| |10 D4
BIORQ 7 8 BRD D2 21 22 D4 p2 7 8 D3
INT 5 6 BWR CAsa2 19 20 D3 cas2 5 6 A7
3 H 4 Al5 17 18 RASI 3 4 MUX
1 2 BMRQ 15 | |16 BMT Al5 1 2 BRW
BRD 13 | | 14 A ROM S
11 12 TIORQ
Cartridge Connector = 5 1
7 8 (NT
GND 29 30 +5V 5 6
cs4 27 28 a8 3 4
A7 25 26 A9 1 2 audio

A6 23 24 Al2

A4 17 18 Csl

GND 13 14 A1l

Al 9 10 D6
AO 7 8 D5
DO 5 6 D4
Dl 3 4 D3
D2 1 2 Cs3

W 9 0w & -

L I N S T N T T I T N I e T T T T e
O W O30V &£V -0 WD WM &~WN -+ 0w

on the previous page.

Expansion module connector (on side).

GND

GND

BD3

BA14

Y2 138 decoder

Y1 138 decoder
m input

BRW output

FMI in/out
Spinner int disable
BUSRQ input

BD1

Z80 reset input

BDO

BM1 output

BD7T

BD6

BA1

BD4

BA2

Bad

BA13

BAS

BA6

BAT

BAS

BA9

BA1O

AUX decode 1, input
AUX decode 2, input

31
32
33
34
35
36
37
38
39
40
41
42
43
44

Audio in, works for out
Video input enable (+9V)
NTSC comp video input (+6V,1.5 VAC)
Game mode reset

Sound disable (OV)
Nothing

BA11

BA12

VDP sync/reset input
BIORQ output

Nothing

Nothing

BA1S

BAZ

Clock 3,58 MEz

BD2

BAO

BDS

ERFSE output

WAIT input

T input

BUSAK output

T output

BMREQ output

ioRQ output

Audio RDY output

+127

+57

+5V

-57

All address lines are output only, but data lines are in/out. The pins
are arranged in normal connector format as shown for the expansion connectors

Overlines indicate active low.

Chapter 18: Pinouts
A1) ff— ! 40 pr—jpe A0
417 -t 2 39 frmp A9
Al]]] 38 fei AB
ATl f— 4 37 e A7
AlS o 5 36 fp A8
[JEe—= gy | 35 b AS
D4 i 7 34—- Ad
03 —g—p{ 8 B e A3
05 e 9 80 32 g A2
D€ i 10 (=1} 31 . A1
SV il 11 30 fripm A0
D2 i 12 29 [GND
07 gl 13 28— FFEH
00 cgfpmnip 14 27 p—pe M1
D! et 15 26 ptm RESET
o~ ——
INT il 18 15 b BUSRQ
v > 17 24 b WAIT
FALT] 18 23 b EGEXK
VRED ey 19 2 b= WR
JORQ asgeed 20 21 p—p D
P Neme Descnption Tyoe
AD - A1S Adoress Bus Trstare, Outout
Do - 07 Data Bus Trstats, Bxrectonel
m faten cvcle Outout
i1 ! met CPU Trstate, Output
5 perfonmeng & Memory sccees
e 1o - 170 Trswne. Outout
N Drogress
L+ CPU resd from memory or |/O oewcs Triswave, Outout
R CPU wrmta to memory or 1/Q dewcs Tristate. Outout
AfeH Refresh dynermc memonss Cutput
RaLT CPU Hait exscuted Outout
WaIT ‘Want siste request nout
wT Interruot recusst Inout
() Inout
RESET Reset and mruskze CPU out
v Request for control of Address, Dsta Inout
and Control Busses
BUSAK Bus acxnowiedge Outout
® CPU clock nout
+5V.GND Power and ground
Memory Aeed Cyile ——=
L5 T2 LF]
@] /Q__S
ag Ars I MEMORY ADOR. l
1
MREQ _f_
e = e
DATA BUS J%l
i0g - o7 e |

280 Memory Read Timing

59

v
T T2 | Ty Ta 8 g
R \ o\

w » ‘/7"\ l ;T-L_

T
[PPp——

Z80 Instrucuon Fetcn Sequence

1 Mo L e —
T T2 T
® \ i \
AD - A1S _ﬁ Y AQOA.
WREQ \ J/
)
] /Q__I_
DATA BUS e ™| DATA OUT , —
00 - 0N I
280 Memory Write Timing
Forced
Wt
Suse
——
T T L oL Ty L1
- g \ \ - e L
a0~ A7 POAT ADDRESS)
ioRo \ e
no \ BN
BATA LS)
e i <SS K T Pl kb
;i r_* Wik
OATA BUS — Sur .

Z80 Input Or Output Cycles

veam (KAS
Strebe C.;g
Lsa ALY
ADG

VRAM ADS
ADDRESS ADM
AD3

AD:

AD [/

mMs8 ADO
R/

GND

ModE

csw

c€sSR

INT

Lsg8 cO7
cné

cos

coY

! #0| wL T+
1 v ¥L I
3 19| cPu cleek
¥ 37| wmeretk
5 ~ 36| VIO ouT
é E 35| E¥ video
: S 3¢| R&SET
s 33| +5VY
? :; 31| Rbo ™S8
ic D 3| RO G DA
" = 1cl RD2 DATA
e < 1 RD3
13 T 3| &DY
1o :9 17| Ro§
1 5 1¢| RD 6
e 15| RAOT7 LS8
(4 i1v| CPRo mMs3
51 23| €p | zyo
19 2| e os*l:;
0 2i| €03
M

CLR |1 1| +5V.

o R R

lek (3 g2| 20

1PR|Y ':u ek

I1Q | 10| zre

1afe aflza

GMlT 8| 2@

IS m +5V

1A |2 : 13| 4 <

'y |3 '; 12| A

2 (Y o\ Yy

1A |5 lo| 3

Y |é 9| 3A

GNOIT 7Y

g
1Y 1 1y
1A :..-g.ru
18 srn.
1Y |4 "
24 |5 »w
28 |6 ?
GnD |7 L

W
1A | 4
Y LR
1A 3";1;
2Y |y <
1A ls e
3y |6 N e
SND| 7 :

INPATS
PR cLR cx p
L ~ X x
H e x x
L = r =
M H 4+ W
N H + L
H B L X

A—{>—Y
C

Y= A, output /s

disablid twhun C 15 Low.

¥Y
48
¥A
Y
38
3A

=5V
6A
[1
A
sY
VA
qY

DUAL FLlIrP-FLoPR

HEX INVERTERS

A—>—Y
Y= A

7405 hes opem-
Collechr curputrs

9
-
4
W

PrIirz

QUAD 3US BuFFéeR
T =Stk OUTRUTS

QI o

i [T oy

G |1 20 +5V.
Al L 19] &=
Ar (32 N el v

A3 v g 7] ¥

A4 s T 6| vs3
AS |e s YHy
AG 7 | s
A7 4 3| Yé
AT |9 e Y7
GAD |l0 1| Yz

D2 |+ ;‘[..:v
bi [z 15| O3
Do |3 2 | eloek
Ready | 4 5!3 oy
WE |5 = 2| ps
CE |6 ; “| D6
Audio |7 /0| DY
GND |8 7| M
A |1 6 +5V,
Seleet { a4 |2 4 15]-Yo
C |3 S M| Y
G2A v w3 Y2
brabled g2 (e 12] va
@/ e 1| vy
y 1 ol K v0 Ys
GND(g 9| Y&
[

Seleat | 6| +5V
1A 4 < /1§ Srrebe
B8 s X | ya
Ly P) -:.‘ 12| 48
2A (s 2| 4y
3 |¢ | 34
1Y |7 | 38
GVD | % T 3Y

61

OCTAL BUFFERS
2-State OUTPUTS
NoN - INVERTING

1A |t M| +8Y "NAND
18 |z 13| 48
LY |3 12| 44
2A (v q | 4Y Y= AB
28 1§ 0| 28
Y |6 7| 3a
GND |7 3| 3Y

3 78 [ne
Decocers

Enable SelectT Out At
(‘W—-\

cxcep t
yo Spefied)
Yi
Yi
Y3
Yo

XLXYXIXIXXr«
rrererrexs
IXXIrrrrxxn
IIrrLICrxx
ITIFCITIr«x

<<=
~0Y

QU.AD 2 ﬁi{ {t'ﬂ{
DATA Selectars

Streba Seltat A B ouTCY)

H b x x I
L [= X ')
= -

c w Sg
L H X M]

